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ABSTRACT

Key distributed coordination and control technologies needed for future deployable
autonomous distributed systems were investigated. Specific tasks accomplished include: 1)
identification and exploration of alternative distributed intelligent system architectures, methods
for distributed data fusion, control, and coordination, and strategies that will increase the ability
of the field to survive attacks, failures, and accidents, 2) development of new intelligent software
agents that facilitate distributed coordination and control, and 3) creation of computer
simulations for developing and testing alternative algorithms, considering tradeoffs, and
evaluating the ability of the distributed system to achieve its goals when presented with a set of
operational challenges. This approach allowed design alternatives to be explored, allowed trade-
offs to be exposed, provided insight into the parameters that influence overall system
performance, and facilitated the identification of requirements for further development.
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I. INTRODUCTION

General Objectives and Specific Aims

The Navy/DoD is moving towards deployment and operation of large-scale networks of
autonomous and semi-autonomous sensors, platforms, and weapons that will improve the
nation's ability to face a variety of threats. The Office of Naval Research (ONR) established the
Deployable Autonomous Distributed System (DADS) program to demonstrate the feasibility of
an advanced tactical/surveillance system that operates as an autonomous field of underwater
distributed sensor nodes using a cooperative field level detection and data fusion system. The
present DADS concept utilizes centralized data fusion, target tracking, target classification, and
control functions under control of a master node. The organization of future DADS (called
Micro-DADS) will use a new architecture of distributed clusters of sensors to allow for improved
performance. Since the master node is eliminated in the new architecture, the system functions
are required to be distributed among the clusters in Micro-DADS, allowing for increased
autonomy in some modes of operation. The increased autonomy of Micro-DADS will make it
possible to employ new methods to reduce vulnerability to detection and destruction by the
enemy, but presents additional challenges including detecting, tracking, and classifying targets in
a distributed environment, coordination of autonomous clusters and prolonging the lifetime of
the battery-powered sensor field. The general objective of this research was to investigate key
distributed coordination and control technologies needed for Micro-DADS. The specific tasks
accomplished during the course of the research include:

1) Identification and exploration of alternative

a) Organizational and computational hierarchies for a distributed intelligent system
architecture that support the ability of the system to achieve directed goals by performing
complex tasks in a distributed environment.

b) Methods for distributed data fusion, control, and coordination to allow the system to
operate in modes ranging from those requiring a high degree of cluster autonomy to
modes requiring high bandwidth communication and coherent processing.

c) Strategies to allow the sensor field to survive attacks, failures, and accidents.

2) Development of new intelligent software agents to facilitate the exchange of information,
distribution of the data fusion, control, and coordination functions, support achieving
survivability, and provide a high degree of autonomy when needed.

3) Development of computer simulations for evaluation of algorithms and alternative
approaches identified in tasks one and two above. Simulations were used to develop and test
alternatives, consider tradeoffs, and evaluate the ability of the system to achieve its goals
when presented with a set of operational challenges. The use of visualization and virtual
reality environments were explored as tools to understand, interpret, evaluate, and compare
tradeoffs and efficiency for the complex Micro-DADS.
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The Present DADS Concept

The present DADS concept (Fig. 1) is a networked sensor system that includes a field of
underwater sensor nodes that communicate via telesonar [1-4]. The DADS is capable of
operating in shallow-water environments such as a harbor, beach, or chokepoint. Small sensor
nodes sit on the ocean floor and may contain acoustic sensors, electric field sensors, and vector
magnetometers. Data is collected, processed, and locally fused in the sensor node, which then
forwards information about target detections to a master node. The master node fuses the sensor
outputs and controls the field power usage to maximize system lifetime. The master node sends
its data acoustically to a gateway node, which communicates with the external command center
via RF communications. The nodes run on battery energy and communicate with each other
using underwater acoustic modems, in many circumstances relaying messages and data from
node to node. At each node, power is consumed by the processing associated with target
detections and by the communications used to transmit and relay detections acoustically.
Weapon nodes could be integrated into the field if an intelligent minefield is the ultimate
objective.

(from http://www.onr.navv.mil/sci tech/ocean/321 sensing/info deploy.htm
not available March 2007.)

Fig. 1. Conceptual DADS field description. The target to be tracked is the red submarine located
at the right of the figure just outside the mouth of the bay (if the figure appears in black and
white, the submarine is dark gray).
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The development of the DADS concept has presented many unique challenges and
opportunities for research and technology development. Technical challenges to be overcome in
order to maximize the performance and life of a DADS include energy limitations (battery-
powered nodes), difficulties in achieving near real-time signal and fusion processing imposed by
the limited computational capabilities of node microprocessors, variability of the environment
affecting the consistency of sensor data required to support state estimation by the fusion engine,
large gaps between track segments due to the configuration and density of the sensor field, the
need to control the reporting of false alarms to reduce waste of resources, the need for an
automated target classification capability, and heterogeneous multisensor detections that make it
difficult to correlate tracks and sensor attributes.

The master node carries out central coordination of the major data fusion, control, and
communications functions. The following brief review of the sensing and target detection, data
fusion, and control functions in the present centralized DADS provides the background to
understand the research needed to develop the future Micro-DADS.

Sensing and Target Detection

Each sensor node uses a set of acoustic and electromagnetic sensors to provide coverage of a
relatively small area of interest. Intra-node fusion (with cross-cueing between acoustic and
electromagnetic sensors) performed at the sensor nodes significantly reduces the data
transmission from each sensor node and offloads some of the fusion processing at the master
node. Both the acoustic and magnetic sensors must perceive a target at the sensor node to report
a detection. Once one node has detected the target, a second node nearby is cued and another
sensor node must detect the target. Once the second sensor node detects and reports the target, a
field level detection is called and reported out by the master node for field level fusion. This
processing results in the reporting of tracklets that provide high confidence position, course,
speed, and classification attributes. This approach provides strongly correlated sensor reports,
reducing the number of uncorrelated or weakly correlated detections that occur at the sensor
nodes.

Data Fusion for Target Tracking and Classification

Correlation Methods and Strategies. Given the wide variety of deployment areas in which
DADS must operate, it must be robust against many factors, including environmental concerns
and field configurations [1], [2]. Field configurations consist of the spacing between the sensor
nodes in the field and the layout of the sensor field. In a dense field where sensor coverage
overlaps, textbook correlation algorithms can be employed. However, in the sparse DADS field,
overlapping sensor node coverage is minimal or nonexistent, and the lack of data due to long
periods between detection reports becomes a significant issue. The correlation of data and tracks
from nonhomogeneous sensor types reporting different target attributes also requires a careful
application of correlation methods. A Multiple Hypothesis Tracker Correlator (MHTC) that is
robust in correlation and tracking problems performs the field-level data fusion at the DADS
master node. In the MHTC concept, hypotheses are formed based on the association and
correlation of sensor reports. Each hypothesis consists of a different combination of sensor
reports, an association confidence, and a tracking confidence. Correlation processes can be vastly
improved by using in situ environmental information as well as information external to the field.
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Target kinematic, target attribute, and environmental measurements are the prime inputs. At the
field level (master node), knowledge about the environment can be exploited to control
processing at the nodes and provide the best opportunities for correlation of sensor detections.
Likewise, information about likely targets in the area can be used to adjust correlation
confidences. The MHTC allows soft decisions to be made until more data are received.
Drawbacks entail the use of more memory due to potentially large combinatorics and the
addition of pruning rules to manage the hypotheses. Given the variability in the lay down and the
spacing of the sensor nodes, and other factors such as target density, a statically tuned MHTC
would not yield the performance needed by the DADS program. For DADS, an adaptation
capability has been added to allow the MHTC to be robust across all possible field
configurations and environments. In a study undertaken to assess the benefits of maintaining
large numbers of hypotheses when operating in a DADS-like environment, a single hypothesis
approach (nearest neighbor tracker) had poor performance for sparse field configurations but a
limited hypothesis tracker (3 hypotheses) exhibited a performance comparable to the full MHTC
[ 1,2]. Reduced performance in cases where limiting the tracker to three hypotheses prompted the
development of adaptive methods for pruning hypotheses. Fuzzy control has been studied as
means to provide efficient hypothesis management in MHTC [3].

Classification. Automatic target classification is important in DADS. Since there is no
human operator in the autonomous sensor system, there is a need to reduce false alarm reporting
from the field, and there is a need to address the levels of refinement in target classification and
their uncertainties. The primary target classification process takes place in the DADS master
node. The automated classification requires a) databases of sensor attributes and target
characteristics and b) a process to combine the received information to produce a classification
estimate. Several projects have extended methods originally developed for the classification of
subsurface targets based solely on acoustic data for additional targets and data inputs. A fuzzy
conditioned Dempster-Shafer algorithm (FCDS) has been developed to determine the
classification estimate. FCDS is a fully probabilistic theory, consistent with Bayesian theory,
which is appropriate for reasoning with ambiguous and imprecise evidence [2]. FCDS is capable
of incorporating a priori knowledge of targets.

Control for Optimizing Performance and Life

Both the processing of sensor detections and acoustic communication drain a node's battery.
In order to maximize system performance and lifetime, the master node controls the field power
usage by a) adjusting detector thresholds and b) the routing of acoustic communications. Given
the sensor locations, communication cost between nodes, initial power available at each node,
power consumption of the sensors, processing and communication, the primary DADS control
problem is to adjust sensor thresholds and communication paths between nodes to maximize
field life subject to a constraint of meeting a desired field level probability of detection.

An individual sensor node can detect targets over only a small area of coverage. To reduce
sensor detection "holes" in sparsely spaced fields, the master node controls the field by adjusting
the sensor node thresholds to acquire a target of interest and detect it through the field [4]. The
master node cues the field by directing selected sensors at the nodes which are near the target to
reduce their detection threshold, thereby increasing probability of detection and hence the sensor
area of coverage. Since reducing thresholds also results in an increase in false alarms and
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potentially an increase in communications and power drain, reducing all of the sensor node
thresholds would limit the system operation and therefore is not acceptable. At individual sensor
nodes, thresholds are lowered or raised to maintain the desired constant field level probability of
detection, while maximizing the life of the field. Threshold levels are adjusted at the sensor suite
by choosing different operating points on a receiver operating characteristic (ROC) curve to
yield different probabilities of detection and probabilities of false alarm.

Evolutionary programming methods have been applied in DADS to allow the field to be
controlled by the master node to meet a field-level probability constraint (via threshold
adaptation) and to optimize routing of the sensor node message traffic at minimal power cost,
doubling the life of the field [5]. Messages were routed through alternative paths excluding
nodes with low battery reserves if possible; this scheme allowed power to be conserved where
needed in order to keep nodes from being lost due to exhaustion of power reserves. Optimization
was based on a cost function for a detector constructed to represent the estimated power
consumed over a period of time T at each node n, n=l, ... N. The cost function model accounted
for communication costs, probabilities of detection and false alarm, node spacing of the field,
and signal processing parameters used at the sensor node.

Future DADS Concept (Micro-DADS)

Future DADS (referred to as Micro-DADS) are expected to be organized in multiple clusters
typically consisting of 6 to 12 sensor nodes plus a cluster node (Fig. 2) [6]. Micro-DADS sensor
nodes may include new sensing technologies in addition to the acoustic, electric field, and
magnetic sensors in current DADS. The cluster node communicates with its sensor nodes and
may perform signal processing and data fusion. The cluster may include decoy nodes and nodes
that may be relocatable. The cluster node is used in routing communications between clusters
and other entities in the field. An RF link or satellite will allow communication with an external
command center that may specify commands, configuration, operating modes, priorities, and
scenario knowledge. Micro-DADS may be armed with internal or external lethal or non-lethal
devices.

Cluster = 6 to 12 sensor - - -

nodes plus a cluster node 1 - 5 Km
- .°spacing

- -_

4W1o -50 -cutrnd

-2 lb.

- . - .

Fig. 2. Conceptual Micro-DADS Field Description (from the Future DADS and USW Concept
Briefing, Office of Naval Research Arlington, VA, May 29, 2001 [6]).
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Clustering the sensors, new sensor and packaging technologies and distributed data fusion,
control, and coordination in Micro-DADS are expected to make the network less vulnerable to
detection, dredging, trawling, and such future threats as quiet submarines, autonomous and
unmanned underwater vehicles, and high-speed torpedoes. The autonomy of the distributed
Micro-DADS clusters will offer advantages not realized with the centralized management
scheme employed in the current DADS. Scalability and fault tolerance are key attributes of
increased autonomy that should increase the capability of the system to withstand attack and
reconfigure if sensors or clusters are lost.

The clustering of sensors provides several advantages that may allow the sensor coverage
areas to overlap, avoiding some of the challenges presented by the sparse DADS field. Clustering
the sensors may allow coherent processing concepts and high bandwidth communications to be
employed within a cluster to improve detection, tracking, and classification performance in some
modes of operation. In addition, some clusters may include specialized sensors that may carry
out unique functions. If the sensors within a cluster have significant processing power, then it
may be possible to employ distributed processing methods to increase the available computing
power above that of the cluster node alone.

Local data fusion within a cluster would significantly reduce (or if in some operating modes
there is a high degree of autonomy, perhaps obviate) the transmission of low-level data from
each cluster node and reduce or eliminate the need for data fusion outside the cluster. Fusion
within the cluster may make use of cross-cueing between differing or similar sensor technologies
to provide strongly correlated sensor reports, reducing the number of uncorrelated or weakly
correlated detections that occur in the cluster. Cueing may also be employed within a cluster to
allow individual sensors or groups to track while lowering thresholds of other sensors or shutting
them off completely to save power. As a target moves out of range of a cluster, inter-cluster
cueing may be needed to allow neighboring clusters to continue tracking.

Multiple and perhaps redundant sensors within a cluster node may allow the application of
new methods for conserving power. Power would be saved if sensors could be turned on only
when needed to acquire measurements.

Autonomous Distributed Systems

The autonomy of the distributed Micro-DADS clusters will offer advantages not realized
with the current centralized DADS. An autonomous distributed system (ADS) is a collection of
independent entities that interact with one another to accomplish a given task. The properties of
autonomous action and autonomous interaction enable an ADS to possess properties like on-line
maintainability, reconfigurability, and fault tolerance. In multisensor surveillance systems, the
autonomous action and interaction must address the data fusion problem and the coordination of
the deployed sensors. Data fusion defines the optimal way of combining detections, local tracks,
and attributes received from several sensors before presenting the information. Decentralized
systems offer the potential benefit of parallel processing in data fusion. The coordination
problem addresses the optimization of the local sensor data acquisition and processing
considering low-level local sensor information, the results of the data fusion process, and high-
level information from other sensors or nodes.
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The literature on synthesizing decentralized decision-making algorithms and evaluating their
performance is sparse. Since centralized control gathers all of the necessary data from all entities
in the system and utilizes the data to make decisions, there is often a belief that the centralized
decisions may be "globally" optimal and superior to the performance of decentralized systems.
However, the combination of a) latency of the information received from subordinates, b) the
delay in making decisions that results from the significant computational load, and c) the latency
of transmission of the decisions hinder the generation of high-quality decisions with centralized
control, especially as the frequency of arrival of the sensor data increases and the environment
gets larger, dynamic, and more complex. In contrast, while the decentralized paradigm
successfully addresses issues b) and c), the lack of access to the total system state limits the
quality of its decisions. Recent literature includes successful asynchronous, distributed, decision
making algorithm designs, wherein the local decision-making at every site replaces the
centralized decision making to achieve faster response, higher reliability, and greater accuracy of
the decisions [7]. Based on a distributed hybrid control paradigm, MFAD is a mathematical
framework for asynchronous, distributed systems that permits the description of centralized
decision-making algorithms and facilities the synthesis of distributed decision-making
algorithms. MFAD was employed to develop a distributed systems approach for a simulated
military command, control, and communication problem. In a comparative analysis,
decentralized decisions derived while trying to achieve globally optimum behavior were superior
to those of a centralized approach. The quality of decisions made by the decentralized system
was evaluated by comparing the decentralized decisions to decisions that are considered ideal
because they are made utilizing complete knowledge of the total system state, unlike the
decentralized paradigm, and are not subject to the latency inherent in the centralized paradigm.
The decentralized decisions closely tracked the ideal decisions that, though unattainable, provide
a fundamental and absolute basis for comparing the quality of decisions.

New Challenges in Micro-DADS

Although new technologies such as self-contained power, fuel regeneration, and
microelectromechanical sensors may offer significant future improvements in some areas,
Micro-DADS faces many of the same technological limitations as the current DADS. Energy
limitations are expected to continue to have a major impact on field life and performance given
the power consumption of sensing, signal processing and communication activities.
Technological limitations, power considerations, and the need to control the rate of false alarms
make maximizing field life subject to a constraint of meeting desired field level probabilities of
detection and false alarm a major component of the control objective for the new Micro-DADS.
However, the cluster architecture and an emphasis on reducing field vulnerability in Micro-
DADS require new distributed data fusion, control, and coordination approaches that may
drastically change the communications and sensor management. The centralized data fusion,
tracking, target classification, and control performed by the master node in the current DADS
concept must be replaced by new distributed methods appropriate for the new cluster
architecture, advanced features, and new goals of the Micro-DADS. Hence, there are new trade-
offs to be made between the degree of cooperation and information exchange between clusters,
the degree of autonomy, performance, robustness, field life, and vulnerability to detection in the
distributed Micro-DADS architecture.
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Interactions with ONR personnel shaped the research and provided a broad background
perspective. Mr. Oliver Allen, Program Officer at the time of the grant award, and Mr. Larry
Green visited Dr. Jannett at UAB on August 4, 2003 for a kick-off meeting at which the grant
activities and plan were reviewed. At that time, in addition to the originally-proposed work that
considered relatively sparse networks of sensors that reported range and bearing, Mr. Allen
requested that the project be adjusted to consider a sensor dust concept employing a large
number of relatively inexpensive and unintelligent sensors, perhaps having limited
communication and detection capabilities such that the sensors are only able to indicate the
presence or absence of a target. Mr. Robert Wingo replaced Mr. Allen as Program Officer in
January 2004. A briefing on the status of the work was given by Dr. Jannett at the Survivable
Undersea Sensors (SUS) Workshop that was organized by Mr. Wingo and held in Arlington, VA
on April 23, 2004.

The rest of this report is organized as follows. Section II describes the organizational and
computational hierarchies selected to provide an intelligent architecture for the distributed
system. Section III outlines strategies that can be employed to improve the survivability of the
distributed sensor field. Section IV describes the algorithms employed for data fusion, control,
and coordination in the distributed sensor network. Section V describes the use of intelligent
agents in implementing the distributed data fusion, control, and coordination algorithms. Section
VI describes the simulation studies used to test and evaluate architectures, survivability
strategies, and algorithms. Section VII presents conclusions. A technical report and three
manuscripts of recently submitted papers offering detailed descriptions of key parts of the
research are given in the Appendix. Papers published by the research group describing details of
the research and results are referenced throughout this report.
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II. ORGANIZATIONAL AND COMPUTATIONAL HIERARCHIES FOR A
DISTRIBUTED INTELLIGENT SYSTEM ARCHITECTURE

In general, centralized management schemes for data fusion and coordination require data
and decisions to be communicated to or from the central entity. Weaknesses of centralized
methods include a high vulnerability to failure and a lack of scalability [7]. If the central entity or
any of its key components fails, the system cannot function. As the system complexity and size
increase, the system becomes limited by the processing and communication capacities of the
central manager.

In decentralized approaches, the decision making process is distributed among several
network nodes. Every entity utilizes its local information and local goals, along with appropriate
coordination information obtained from other entities, to make its decisions autonomously, but
cooperatively, in order to achieve the desired global performance. Compared to the centralized
system, the distributed decision-making system can process information faster and can react
more quickly to dynamic changes in the environment. The distributed system is expected to
exhibit scalability and robustness against catastrophic failure. However, if the advantages of
decentralized realizations are to be attained, resources and functionality must be replicated across
the distributed system at an extra cost. Since each entity computes decisions autonomously, extra
communication, data storage, and computational overheads are incurred in making key system
information, including the global goals, available to each entity. Distributed systems realizations
may require extra hardware resources if their advantages over centralized systems are to be fully
realized. For example, if only one node entity has the ability to communicate with the command
center in a centralized sensor network, then a distributed realization of the sensor network would
require that multiple entities have the ability to communicate with the command center.
Otherwise, the loss of the single entity that communicates with the command center would
render the system useless.

Organizational Hierarchies

At a minimum, intelligence involves sensing the environment, making decisions to achieve a
goal, and controlling action [8]. Intelligent systems generally exhibit a hierarchical organization,
include certain elements, and require an interconnecting system architecture for these elements.
Several factors have been identified that affect the degree of intelligence, including
sophistication of algorithms, quality of information, computational power, the values used to
make decisions to choose among alternatives, and communication capability. In this work, a
distributed intelligent system architecture of organizational and computational hierarchies that is
consistent with characteristics of intelligent systems was employed to support the ability of
Micro-DADS to achieve specified goals by performing complex tasks in a distributed
environment. An organizational framework structures the interactions between individuals and
affords individual entities an abstract view of the task accomplishment activity going on in the
system. An organization imposes roles, expectations, and relationships among entities.
Organizational structures facilitate task decomposition and allocation, resource sharing and
problem solving coherence.

Fig. 2 includes sensor nodes and cluster nodes, but does not show master nodes or the
external command center that receives the data from the sensor network. Other hardware, such as
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the communication link(s) between the network and the external command center, is also not
shown.

The organizational hierarchy employed in this work includes the sensor, cluster, and field
levels, with the external command center located at the highest organizational level. The sensors
are organized into clusters, such that each cluster contains a fraction of the field's sensors. The
external command center communicates with the field about the status and activities of the field.
The networks considered in this work include a) sensor, cluster, and master nodes, or b) sensor
and cluster nodes. Sensor, cluster, and master nodes map directly into the sensor, cluster, and
field levels, respectively, of the organizational hierarchy. If no master nodes are present in the
system, then the cluster nodes also map into the field level of the organizational hierarchy.

This organizational hierarchy is consistent with the partitioning of spatial and temporal
resolution that characterizes intelligent systems [8]. Low-level data is processed at the sensor
level, with higher organizational levels operating on increasingly more abstract data. Sensor
measurements reflect the status within a small subset of the field, and larger portions of the field
are considered at the cluster and field levels.

Organizational hierarchies may configure groups of sensors in fixed clusters such that the
sensors within a cluster report to a single cluster node. Instead of this fixed clustering approach,
some applications may be better served by a dynamic clustering approach in which the sensors
are organized into the clusters that best facilitate the application [9-12]. For example, in a target
detection application using fixed clustering, if the target straddles two clusters, then the sensors
nearest the target within each cluster would detect, and data from both clusters would need to be
processed in making a detection decision. Performance might be improved with use of a dynamic
clustering approach in which a single cluster is formed to include the all of the detecting sensors.
Fixed clustering was used in this research in order to facilitate the development, demonstration,
and ease of comparison of distributed systems methods, and approaches to improve survivability.
However, the research results may find application in dynamic clustering as well as fixed
clustering.

Computational Hierarchies

Many different algorithms must be executed in order to carry out the various sensor network
functions. The computational hierarchies depend on the specific tasks that must be accomplished
to execute the algorithms. A methodology for the design of intelligent systems that describes an
architecture, design guidelines for computational hierarchies, building blocks, and a prototyping
method was erpployed in this work [ 13]. This methodology resulted in a system that exhibits the
characteristics that define intelligent systems, including a hierarchical organization, and the use
of multiresolutional information processing in external information organization, knowledge
representation, and decision-making processes. The following guidelines were used to facilitate
the design of intelligent sensor networks.

Use task-oriented decomposition to design the computational hierarchy for each
algorithm. The steps are developing a task tree, choosing a thread of tasks spanning the
tree, and adding task threads iteratively.
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"* Map the task tree into the organizational hierarchy of nodes, which may be thought of as
intelligence modules.

"* Organize the hierarchy around tasks top down and equipment (actuators and sensors)
bottom up.

"* Partition spatial and temporal resolution by an order of magnitude between levels in the
hierarchy, with roughly ten decisions or less per level.

"* Use 7+2 subordinate nodes per supervisory node and one supervisory node at a time.

"* Distribute sensory processing, world model, behavior generation, and value judgment
functions throughout the system so that they exist in appropriate forms at each node.

In this work, the computational hierarchy maps the tasks needed to execute a given
algorithm into the sensor level functions, cluster level functions, and master level functions
needed to execute the algorithm. Master functions represent field-level functions. The term
'master' was inspired by the previous centralized DADS work in which the master node carried
out field-level functions. As described earlier, the networks studied in this work included a)
sensor, cluster, and master nodes, or b) sensor and cluster nodes. Sensor functions were carried
out at the sensor nodes and cluster functions were carried out at the cluster nodes. Master level
functions must be carried out using the nodes that exist in a given physical realization. If master
nodes were included in the network, then master level functions were carried out at master
nodes. If no master nodes were included, then master level functions were carried out at cluster
nodes.

Motivated by the Principle of Increasing Precision with Decreasing Intelligence, a three-
level computational structure which includes an organization level, a task planning level, and a
task execution level was replicated at each of the sensor, cluster, and master levels [14]. The
organization level receives external commands and information, communicates with other nodes,
and performs such operations as planning and high-level decision-making and sends commands
to the task planning level. The task planning level receives the decisions about the set of tasks to
perform in the next sensor management cycle and their priority. The execution level is concerned
with the low-level sensor management, data acquisition and processing.
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III. STRATEGIES TO ALLOW THE SENSOR FIELD TO SURVIVE ATTACKS,
FAILURES, AND ACCIDENTS

Survivability addresses the ability of a system to respond to attacks, failures, and accidents
[15]. Survivability depends on four key properties: a) resistance to threats, b) recognition of
threats and the extent of any damage suffered, c) recovery of full and essential services after
damage, and d) adaptation and evolution to reduce effectiveness of future threats. The general
trend in designing distributed systems to give an increasing amount of autonomy to the
individual nodes generally increases survivability [16]. The distributed architecture of Micro-
DADS inherently offers physical dispersion and the capacity for functional distribution that
support the resistance and recovery properties. Highly autonomous operating modes may
facilitate reduced communications that decreases the likelihood of detection by the enemy and
thereby increases the resistance to attack.

The coordination and communication network functions are major determinants of
survivability. These and other Micro-DADS system functions were considered in addressing the
four survivability properties. The major threat considered in this work was the loss of a node due
to depletion of power reserves or node failure. In this work, the network lifetime was assumed to
end with the loss of any sensor node, cluster node, or master node. Although a different
definition of the useful network lifetime may be more appropriate in some network applications,
the definition above serves as a very direct reflection of the major problems that limit network
lifetime: loss of nodes due to node failure and depletion of battery reserves. Threats due to
factors such as communications disrupted by the enemy, interception of communications by the
enemy, or false communications injected by the enemy were not considered.

The primary strategies to increase survivability developed and exploited in this work include
1) incorporating and utilizing redundancy 2) balancing resource utilization among available
reserves, and 3) using local optimization to improve global performance. These strategies
support the four key survivability properties. Incorporating and utilizing redundancy is a strategy
that is appropriate to use when the nominal field layout does not include the active resources
needed to recover full and essential services after damage. In this strategy, redundant nodes
distributed within the field are dormant until they need to be utilized to achieve a higher level of
performance or to replace nodes lost due to failure or depletion of power reserves. In the strategy
of balancing resource utilization among available reserves, functions are switched between node
entities to evenly spread the utilization of computational and communications resources over the
network so that nodes are not lost prematurely due to exhaustion of battery energy. Without
balanced resource utilization, some nodes will die to end the useful lifetime of the network even
though other nodes may have enough battery energy. to allow the network to run significantly
longer. The strategy of using local optimization to improve global performance allows global
performance to be optimized without requiring extensive global information sharing and
centralized decision-making. These three approaches were evaluated using agents and without
using agents as methods for managing the coordination and communication functions to support
the resistance, recognition, recovery, and evolution survivability properties.
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IV. ALGORITHMS FOR DISTRIBUTED DATA FUSION, CONTROL, AND
COORDINATION

For Micro-DADS, significant efforts that require resources far beyond those available for
this work will be required for the full and detailed development of distributed algorithms needed
for sensing and target detection, data fusion, control, coordination and communications functions
that are as sophisticated as those that have been developed for the centralized DADS. The
intelligent systems design methodology described above in the section Computational
Hierarchies allows relatively limited aspects of a problem to be addressed, with possible
expansion to other aspects at a later date. This capability was very important since it allowed us
to assess aggregate system performance by evaluating a number of alternatives for algorithms
without the detailed development of all of the algorithms that would eventually reside in an
entity (sensor node, cluster node or master node). Although the following descriptions of the
major Micro-DADS system functions are presented in some detail, our primary efforts were
focused on the development of the control and coordination functions that are so important in
distributed systems. Thus, instead of developing each of the functions in great detail, the primary
approach used in this work was to model the behavior of candidate algorithms to allow the
assessment of how their performance would influence the system. In situations where a detailed
implementation of an algorithm for a sensing and target detection, data fusion, control or
coordination function was not available, high-level abstract representations of function behavior
were used to facilitate constructing the system-level simulation. This approach provided insight
into the parameters that influence overall system performance, exposed trade-offs, allowed
design alternatives to be explored, and facilitated the identification of requirements.

For Micro-DADS, the primary system functions are sensing and target detection, data fusion
for target tracking and classification, control for optimizing performance and life, and
coordination and communications appropriate for the distributed architecture. These functions
will be carried out by operations within the clusters, and by the clusters cooperating within the
Micro-DADS architecture. The new opportunities and options offered by clustering emphasized
the need to develop appropriate methods for distributed data fusion and coordination as
described in the following.

Sensing and Target Detection

Determining the presence or absence of a target within the sensor field is the detection
problem. Determining the position of the target within the field is the localization problem.
Determining where the target is moving is the tracking problem. Distributed detection,
localization, and tracking were considered in this work. In one approach, many inexpensive
sensors that reported a logic '1' or '0' to report the presence or absence of a target, respectively,
were employed. The a priori knowledge of the positions of the detecting sensors were used to
localize the position of the target and report it in (x, y) coordinates. In another approach, sensors
that reported the target's range and bearing were used in a target tracking application.

Target Detection Using Binary Sensor Data in Hierarchical Sensor Networks

Sensor networks employing a large number of relatively inexpensive sensors having a
limited detection range and communication capability are an area of significant research interest
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[ 17], [18]. For a sensor network having a large number of sensors, a fusion center can make a
final decision about a target's presence with a decision fusion rule that uses the total number of
detections reported by local sensors as a statistic in binary hypothesis testing. However, sensor
limitations may make it difficult to achieve a required probability of detection (PD) and
probability of false alarm (PF) performance unless the number of sensors is very large [ 17]. In
addition, this centralized approach would suffer from weaknesses including a high vulnerability
to failure and a lack of scalability. As the size of such a centralized system increases, its
performance is limited by the computational and communications capacities of the central entity.

We investigated the benefits offered by multi-tier hierarchical sensor networks that utilize
decentralized fusion for target detection (see appendix). The PD and PF that describe the
detection performance at the different levels of a multi-tier network were derived and calculated.
We devised and demonstrated a strategy in which detection decisions are made through repeated
trials in order to facilitate achievement of a specified average PD and PF performance using
inexpensive sensors that have limited detection and communications capabilities. The multi-tier
network allowed repeated trials to be performed at the different hierarchical levels in order to
obtain the extra degrees of freedom that are needed to achieve the specified average PD and PF
performance. In addition, if the low-level detections are made within a sensor cluster whose
location within the sensor field is known, then the location of the detecting cluster is information
that could aid in target localization.

This work may facilitate a variety of applications for networks that utilize inexpensive
sensors. For example, inexpensive sensors might be arranged to form the outside border of a
sensor network such that a high PD and low PF are achieved within the border area. When a
target is detected at the border, other network functions or application-specific sensors could be
awakened and used as needed to estimate the target's position, track the target, or classify the
target.

The distributed nature of multi-tier hierarchical sensor networks facilitates decentralized
fusion and performance improvement using repeated trials. Decentralized fusion reduces the
communication resource demand at areas within the network that are near the central entity.
However, the use of repeated trials requires increased sensing and local communications. Future
work could consider optimizing performance and resource utilization by the choices of
parameters such as the type and the number of common sensors, the number of sensors at each
level, detection thresholds, and the number of hierarchical levels. Another area for future work
is the development of methods that would guarantee that the worst-case performance exceeds a
specified level.

Maximum Likelihood Target Localization Using Binary Sensor Data

Target localization for estimation of target position is an important application of wireless
sensor networks (WSNs). Position estimates obtained using localization can also be used in
tracking applications. One promising approach for target localization is a method using binary
sensor data for which a maximum likelihood (ML) estimator and its Cramer-Rao lower bound
have been derived [19]. In this approach, each sensor makes a binary decision about a target's
presence by comparing the measured signal strength to a threshold, and communicates a one-bit
message to a fusion center. The fusion center uses the binary information received from all the
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sensors, along with a priori information about the positions of the sensors, to localize the target
through nonlinear optimization of a highly complex multimodal function. Recently, this
approach was extended for localization based on quantized data [20]. These methods are
attractive because they facilitate accurate target localization based on the transmission of binary
or multibit quantized data, which requires limited communication bandwidth. The ML estimation
framework for target localization using binary data presented in [19] and reviewed in the
following was utilized in this work.

In the model below, signal intensity is assumed to attenuate as the distance from the target to
a sensor increases

l+ad,(

where ai is the signal amplitude at the ith sensor, di is the distance from the target to the ith
sensor, J-J is the signal amplitude at the ith sensor when di is zero, a is a constant, and n is the

signal energy decay exponent. Sensor parameters used in this work are n = 2, a= 2, and P, = 64.
The distance from the target to the ith sensor is given by

di = V(xi-x+)2 +(y, - y,)2  (2)

where (xi, yi) are the coordinates of the ith sensor and the target location is given by (xt, yt). The
signal a, is corrupted by standard Gaussian noise (ou that is independent across sensor i and time
framej

sU = ai + WUi. (3)

Each sensor makes a binary decision depending on the signal si satisfying a local sensor
threshold qj during timeframej and transmits its decision to a higher-level fusion node where the
decision is used in target localization. After collecting the decisions I, from all N sensors for all
T timeframes, the fusion center estimates the parameter vector, 0 = [x, yj], by maximizing a log
likelihood function with respect to 0 [ 19]. The elements of Orepresent the target position.

For a target position, 0, the Cramer Rao Lower Bound (CRLB) for an unbiased ML estimate

of the target position, 0, is given by

E{[9(I)-O][O(I)-O} > J-' (4)

where J is the Fisher Information Matrix (FIM) [ 19]. The covariances of the errors in estimates
of (Ot, YA) are bounded by the (1, 1) and (2, 2) elements in the J' matrix, respectively

var(6O )=var(x, )>J,,iI

var(02 )= var(.', )J22-. (5)

17



A lower bound on the variance of the target position estimate, D, can be computed as

var(D)= var(9O )+ var(9 ) (6)

where D=4'7,- + y,' is the Frobenius norm. Thus, the lower bound for the root-mean square

(RMS) error in the overall target position estimate is var(1) . Computing the lower bound for
the RMS error at many target locations across the sensor field aids in assessing the performance
of alternative network configurations.

However, the parameter estimation required by this approach involves optimization of a
complex multimodal function, which is challenging. Deterministic search algorithms are
ineffective because they can converge to local minima, resulting in large localization errors.
Stochastic algorithms provide global solutions, but may yield only approximate solutions, are
computationally burdensome, and can require tuning of parameters. Although the approach
presented in [19]-[20] is attractive and is supported by estimation theory that would facilitate
many further developments, it quickly became clear in this research that applications were not
possible without the development of a suitable estimation algorithm. Several approaches to this
estimation problem were considered in this research [21]-[25]. First, we considered the
continuous adaptive culture model (CACM) as an alternative to stochastic estimation algorithms
such as Genetic Algorithms (GAs). We also studied a new estimation algorithm, the gradient-
based particle swarm optimization (GPSO) algorithm, that combines stochastic and deterministic
schemes to achieve high convergence rates and avoid traps due to local minima experienced in
ML target localization. Next, work turned to parallel PSO algorithms that may be suitable for
complex optimization problems. Finally, we investigated a novel two-step approach that allows
accurate localization of the target without incurring a high computational burden.

The CACM Algorithm. GAs suffer from slow convergence rates, and require the user to
make difficult choices of ranking and scaling schemes and subpopulations that lead to
complexities in implementation. A new computationally inexpensive alternative to GAs, the
Continuous Adaptive Culture Model (CACM) algorithm, was proposed [22]. This new
optimization algorithm was inspired by sociological models of culture dissemination and uses
operators that act directly on vectors of real numbers to avoid the computation associated with
binary encoding and decoding in GAs. The new algorithm does not use global information
sharing, which makes it amenable to parallel implementation since computational bottlenecks
can be avoided. The new optimization algorithm was tested using the De Jong test suite of
optimization problems. Simulations were used to investigate the effects of various parameters on
the performance of the algorithm. For a four-dimensional Rastrigin test function having multiple
local minima, the CACM algorithm converged faster than a GA using 40-bit accuracy per
variable and a single population. The CACM algorithm does not require global information
sharing, thus avoiding computational bottlenecks, and facilitating parallel implementation. The
operators introduced can also be used in GAs to avoid binary encoding.

The GPSO Algorithm. Stochastic global optimization algorithms like GAs, PSO algorithms,
and simulated annealing avoid traps due to local minima. However, since stochastic optimization
schemes perform a random search of the solution space, they suffer from slow convergence rates,
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high computational costs, and poor accuracy of the final solution. Thus, hybrid optimization
schemes that combine both stochastic and deterministic schemes to achieve high convergence
rates and avoid local traps are of interest. The GPSO algorithm combines a PSO algorithm used
for global exploration with a gradient-based scheme used for accurate local exploration [23]. The
PSO algorithm is used to go near the vicinity of a good local minimum and then the gradient-
based local search scheme is used to find the local minimum accurately. Next, this accurately
computed local minimum is used as the global best solution by the PSO algorithm to identify still
better local minima, and the cycle is repeated. Thus, with the GPSO algorithm, the global
minimum is located through a process of finding progressively better local minima. The
phenomenon of failure of ML target position estimation in WSNs due to multimodality of the
likelihood surface was explored. High sensor power levels resulted in complex likelihood
surfaces. Simulation results show that a deterministic algorithm sometimes converged to local
minima, especially when the target was near the edge of the sensor field. The performance of the
deterministic algorithm was compared with that of the GPSO algorithm for ML estimation. The
use of the GPSO algorithm resulted in efficient global optimization and significantly higher
estimation accuracy in a variety of cases. However, the GPSO is a very complex algorithm that
presents a high computational burden.

Parallelization of the PSO algorithm. A parallel implementation was developed for the
coarse-grained parallelization method for the PSO algorithm that was proposed in [21]. In order
to aid in the selection of the parameter values that would allow good performance to be achieved
using the parallel algorithm, an analytical performance model was developed [24]. The model
allows the run-time performance to be predicted for the various parameter options. Results of
preliminary simulations were presented to validate the performance model. Next steps in the
work are to test parallel PSO methods and the performance model in complex optimization
problems.

The Two-Step Approach. In the first step, a coarse estimate is formed by performing a
weighted average of the sensor positions that report the presence of the target. The coarse
estimate is then used as the initial estimate for a second step in which a deterministic search is
performed using the Nelder-Mead simplex method. This two-step process essentially reduces the
global search to that requiring a local search near the global minimum, and thus avoids pitfalls
due to convergence to local minima. For an exemplary sensor network, our results showed that
the deterministic direct search often failed by converging to a local minimum if the starting
point was chosen at random. On the other hand, the two-step approach accurately localized the
target with a low computational overhead. Simulation results show that the two-step approach is
a simple method that can be used to localize a target using binary sensor data in an ML scenario
[25] (see appendix). The two-step approach provides an unbiased estimate of the target position,
and allows the ML estimator to achieve localization performance near the CRLB. This approach
may be a step toward facilitating the routine use of the promising ML target localization methods
described in [19] and [20] in which the use of quantized sensor data reduces the needed
communication bandwidth.

Effect of Uncertainty in Sensor Positions on the Accuracy of Target Localization. Most
research on target location estimation using binary decisions assumes that there is no uncertainty
in the positions of the sensors. In reality, many factors may contribute to some measure of sensor
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placement uncertainty, resulting in less than ideal sensor positioning. We studied the accuracy of
target localization achieved using detection decisions made by sensors whose positions were
assumed to be exactly known, even though the detections were actually generated by sensors
having uncertain positions [26]. Computer simulations were used to demonstrate that sensor
position uncertainty, along with noise and coarseness of the sensor grid, degraded the accuracy
of target location estimation. In future work, models could be developed to describe how sensor
position uncertainty degrades the accuracy of estimation of target location.

Data Fusion for Target Tracking

Alternative methods of distributed data fusion for target tracking include the possibility of
either partially or fully distributed MHTC, methods based on Kalman filtering, and multiple-
model schemes. Use of the full complement of sensors and computational power within a cluster
increases the power drain and use of resources. Use of a subset of the available sensors within a
cluster may allow for longer life with reasonable performance tradeoffs. In addition, the potential
benefits of fusing data, tracks, or classifications from multiple clusters needs to be explored and
the trade-offs considered; operating modes that support significant field level fusion of data from
multiple clusters need to be developed and evaluated if they offer higher performance in some
situations. In this work, we have used extended information filtering algorithms as exemplary
algorithms because they are applicable for the wide variety of distributed architectures of interest
and because they accommodate missing data and late communications [27].

Representation of the Tracking Problem

The instantaneous distance of the target from a sensor can be determined by two parameters,
range ( p ), and bearing (0). Let the velocity of the target be V. The velocity can be resolved into
two vectors in x and y directions, Vx, and Vy, respectively (Fig. 3). In a similar fashion, the range
p of the target from the sensor can be resolved as p. and p, [27].

Y
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Fig. 3. Tracking problem in two-dimensional space.
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If the velocity is assumed constant, the state-space model for the target motion is

"F "(k)1[ I T 0 0O (k-1)
V. (k) 11 + 0w~lV(k- ) (7
P /(k) 0 0 1 T p/I(k- 1)(

VY(k) L0 0 0 1 J[Vy(k-1)J

where T is the time interval and w(k) is the process noise model. The measurement model is

VF 2 P21

0J tan - v(k) (8)

where v(k) is the measurement noise model. The representation in (7) and (8) was developed
for sensors that report range and bearing. Other representations might be derived for different
measurements, such as the estimates of the (x, y) target position provided by localization using
binary sensor data [19], [20], [25].

Tracking Algorithms

In pilot studies, we have used extended information filtering (EIF) to apply parallel Kalman
filtering algorithms [28]-[3 1] to the nonlinear tracking problem represented by (7) and (8) above
for the two-tier hierarchical, fully connected and non-fully connected distributed architectures of
interest. These algorithms accommodate missing data and data that arrives late due to
communication delays [27]. These new EIF tracking algorithms serve as exemplary algorithms
for distributed data fusion that operate in scenarios ranging from coherent parallel processing at
high data rates within a sensor cluster to autonomous tracking based on intermittent and delayed
measurements from a single sensor. Hence, the algorithms apply in situations that include
tracking a target based on measurements from distant sites that have a single sensor,
measurements from sensors within a single cluster, and information from several sensor clusters.
The algorithms apply in the following situations:

1) All sensors collocated. This case corresponds to a Micro-DADS cluster tracking a target
based on only the measurements from sensors within the cluster. If each sensor node has
significant computing power and estimates a local track based on its own measurement, then
a parallel EIF structure may be employed to allow the cluster node to produce an optimal
global -estimate and error covariance based on only the local estimates and covariances that
are communicated to it by the local sensor nodes. If each sensor node is not capable of
performing the computations needed for local tracking, then standard tracking algorithms
may be employed at the cluster node to process the raw sensor data without the benefit of
parallel computation.

2) All sensors dispersed. This case corresponds to a situation in which multiple clusters each
operate with only a single active sensor. If the measurements at the local sensors are time-
sequential in nature, then a second parallel ElF structure may be utilized to achieve
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parallelism. Since the algorithms accommodate missing data, the requirement that the
measurements be time-sequential is not limiting.

3) Sensors both collocated and dispersed. This case corresponds to generating a global track
based on information from several Micro-DADS clusters. A two-tier hierarchical structure is
employed to achieve parallelism. At the lowest level, the methods of situation 1 above are
used to generate a track estimate for each cluster; a second parallel structure based on the
methods of situation 2 above is employed to fuse the estimates from all clusters to produce a
global estimate.

The situations above cover the two-tier hierarchical, fully connected, and non-fully
connected distributed architectures that represent the spectrum of interconnections relevant for
data fusion in the tracking problem. In a two-tier hierarchical architecture, data from each sensor
within a cluster is fused at the cluster's local fusion center, and the local fusion results are then
fused at a higher-level global fusion center (Fig. 4). In the fully connected (Fig. 5) and the non-
fully connected (Fig. 6) architectures, nodes generate estimates based upon both their own local
measurements and the measurements from the other nodes to which they are connected.

CENTRAL PROCESSOR ( FUSION CENTER)
A A
X, P

ocal fusion center
er Node

;l,P x2,2 x3,pi3

zi zi z2 z2 z3 z3

100 - 500m

1 - 5kmn
Sensor Clusters

Fig. 4. Two-tier hierarchical architecture. Clusters fuse measurements, z, and pass their local
estimates ( Y, P) to a fusion center.
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Fig. 5. Decentralized, fully connected architecture. Clusters fuse their measurements, z, and pass
their local estimates (i ) to all other clusters.
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.lCCluster

Fig. 6. Distributed and decentralized, non-fully connected architecture. Clusters pass their local
estimates to neighboring clusters.

These three architectures may be used to represent interactions between sensors in a cluster
or they may represent higher-level interactions between clusters. Any or all of the three

architectures may be utilized at different levels within a sensor field. For example, a fully
connected architecture may represent the interactions of sensors within a cluster, a two-tier
hierarchical architecture may represent the higher-level interactions between clusters within a
group, and a non-fully connected architecture may represent interactions between groups of
clusters.

These exemplary fusion algorithms allowed system performance to be evaluated for
alternative sensing and target detection algorithms, control algorithms, survivability strategies,
and agent paradigms in the face of a wide variety of operational challenges presented to the
distributed system [32]-[36]. The ElF algorithms were applied to the tracking problem
represented by (7) and (8) for sensors that report range and bearing. However, the algorithms
could also be applied to a tracking problem representation developed for measurements that are
the (x, y) target position estimates computed as described in the Maximum Likelihood Target
Localization Using Binary Sensor Data section of this report.

Fuzzy-Reinforcement Learning to Track a Mobile Target using a WSN

Fuzzy logic and reinforcement learning techniques were applied to the problem of predicting
and tracking the position of a mobile target as it travels through a distributed WSN [37]. The
accuracy of the target position prediction, amount of communication between distributed
sensors, and power consumption are all issues that influence the performance, reliability, and
survivability of the sensor field. A reinforcement learning method based on fuzzy logic was
designed to improve the accuracy of an existing target tracking method [38] without adversely
affecting its underlying communication and power consumption. The reinforcement learning
method incorporates a feedback error term that represents the estimated difference between the
actual and projected target positions. This error term continuously adjusts a fuzzy inference
mechanism that has been added to a previously defined tracking approach [37]. The new
approach was compared to the unaugmented tracking approach for a variety of target movement
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scenarios in simulation. Simulation was used to compare Fuzzy reinforcement learning improved
the mean square tracking error (MSE) except in cases where the target maintained a nearly
constant velocity for which fuzzy reinforcement learning and the unaugmented approach both
produced a low MSE.

The fuzzy-reinforcement learning method is an example of an intelligent systems approach
to target tracking. Extending this fuzzy-reinforcement learning method to counter the effects of
sensor noise and sensor placement inaccuracies and the application of Neuro-Fuzzy techniques to
train and optimize the initial fuzzy sets are areas for future research.

Control and Coordination for Optimizing Performance and Life

As described in a previous section of this report, the strategies used to increase survivability
in this work include 1) incorporating and utilizing redundancy 2) balancing resource utilization
among available reserves, and 3) using local optimization to improve global performance. This
section describes several approaches in which these strategies are brought to bear in optimizing
performance and life. Redundancy may be available in the form of underutilized existing
network resources or it may be provided by the placement of extra resources that would not
otherwise be available in the network. These approaches utilize redundancy to support the
resistance, recognition, and recovery properties of the sensor network to increase survivability
and to increase overall performance and life of the field.

Redundant Functionality

If redundant functionality is incorporated in the network, then reconfiguration could make
use of existing resources by moving the function of a dead or dying node to another node having
the capability to execute the function. For example, if the power reserve falls below a threshold
in the node currently handing master node functions such as data fusion and communications
with the outside world, those functions would be relocated to another capable node.

In one approach, the capacity to perform the master level functions in the computational
hierarchy was distributed among several cluster nodes and the coordination function was used to
move the master level functions from one capable cluster node to another to increase the lifetime
of the field [33], [35], [36]. The cluster nodes ran cluster level functions unless they were also
called on to run master level functions. Master level functions running on a cluster node utilize
additional computational and communications resources, and need more power than is required
for the cluster level functions alone. The routing of communications to and from the cluster node
running the master level functions increases power utilization at surrounding sensor nodes. If the
master level functions would always be carried out at a single cluster node, the resulting power
drain would most likely cause this cluster node or one of the nearby sensor nodes to die first due
to battery depletion, ending the useful life of the field at a time when most other nodes would be
likely to have significant power remaining. With the approach of moving master level functions,
the resource utilization was balanced among the cluster nodes so that the field degraded
gracefully and the field lifetime increased.

24



Balancing the Utilization of Communications Resources

An approach for balancing the utilization of communications resources throughout the
network by routing based on power and node availability preserved the availability of the
resources needed to route messages throughout the network. Several schemes were considered
for routing based on power and node availability [39]. Preservation of critical communications
resources would increase the useful lifetime of the field.

Communication requirements both internal and external to the cluster were considered. In
this work, it was assumed that sensors could communicate directly with their cluster nodes.
Communication between clusters was needed in varying degrees to support fusion, tracking,
classification, queuing, switching modes of operation, and information exchange needed to
maintain redundancy. Communications between clusters may also include environmental
information, information about likely targets in the area, as well as additional information
external to the field that can be exploited to control processing at the cluster nodes and provide
the best opportunities for correlation of sensor detections. Since cluster and master nodes were
spread over a wide area, cluster-to-cluster relaying of information was used to transmit
information between master nodes, cluster nodes and the external command center. The node
sending the data communicated with the receiving node through cluster-to-cluster relaying of
information using intermediate sensor nodes. Each node maintained a routing table that
contained information for routing data to a given receiver node.

In the Fixed Multi-Hop Routing (FMR) protocol, the data from the sending node is routed to
the receiving node through intermediate sensor nodes. Each node maintains a routing table that
contains information for routing data to a given receiver node. The Probabilistic Multi-Hop
Routing (PMR) protocol attempts to equalize the routing load uniformly among all the nodes in
the sensor network. In contrast to FMR, where every node has only one next-hop node for
routing data, in PMR one of several possible next-hop nodes is selected randomly by the sending
node at run time. The Modified Probabilistic Multi-Hop Routing (MPMR) protocol is similar to
PMR, except that while calculating the next-hop node from the pool of possible next-hop nodes,
the previous use of nodes (state) is taken into account. In other words, a node's probability of
selection is reduced if the node was used previously for routing data using MPMR.

For each of the FMR, PMR, and MPMR protocols discussed above, whenever there is a
need to update the routing table due to factors such as low battery energy at the routing nodes,
the resulting communication overhead is aggravated by redundant communications between
nodes. Localized Optimization (LO) is a new scheme developed in this work that attempts to
reduce this overhead. LO exploits the fact that a cluster node a) has access to the information
about battery energy levels at the sensor nodes within the cluster with negligible communication
overhead and b) possesses the required computational power to perform a localized routing
adjustment. In LO, whenever a routing node's battery energy level falls below a preset threshold,
the cluster node employs a set of rules to choose another node in the cluster to act as a
replacement routing node. This scheme eliminates the need to inform other clusters in the sensor
network of the new routing node, resulting in a substantial decrease in the communications
overhead from that required to update routing tables throughout the network. Since the LO
concept involves only changing the network address and range setting of a given sensor node, the
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scheme requires very little computational and communication overhead. The LO concept was
applied to each of the FMR, PMR, and MPMR routing protocols.

The routing protocols were implemented and tested in simulations using resource-based
modeling. The field lifetime was the time from the start of the simulation until battery energy
power was exhausted at any node. The overall field lifetime was higher with PMR and MPMR
than for FMR. However, since PMR and MPMR select the next routing node randomly, the next
routing node selected may sometimes be the same node that forwarded the data to the current
sending node, resulting in network oscillations. Due to these network oscillations, the time taken
to route data in PMR and MPMR was higher than FMR, resulting in delays in data transmission
that may adversely affect performance in some applications such as target tracking. The use of
LO improved the field life for all of the routing protocols. The improvement in the field life was
due to the effective use of the inherent redundant resources available in the sensor network.
However, LO also introduced delays in data transmission. The use of FMR with LO is the most
promising of the routing protocols considered, since it significantly improved field life at the
expense of only a minor increase in delays, and can be applied locally within a cluster [39].

Balancing the Utilization of Power Resources

The cycling of the power supplied to some sensors based on the need to acquire
measurements for tracking provided a simple means to conserve power. The evolution of the
covariance of the track estimate computed using the ELF algorithm served as a useful means to
determine when to turn on a sensor in order to acquire the measurements needed to maintain a
given tracking accuracy [36].

Pre-Computed Reconfiguration

Evolutionary programming, ant algorithms, and immune algorithms are examples of
emerging biologically inspired approaches that may find application in optimization, distributed
control and eliciting cooperative behaviors. Some of these methods are now being applied for
combinatorial optimization and routing in communications networks. We investigated
evolutionary programming and ant algorithms for message routing using the traveling salesman
problem [40]. Ant algorithms generally outperformed genetic algorithms (GA) in computing
optimal routes, but required more computation.

However, optimal reconfiguration in real time during normal system operation is difficult
and requires significant communications and computations. Therefore, it may not be practical to
run the optimization algorithms needed to perform complex reconfiguration in real time, or at the
time when the network needs reconfiguration. When a scenario requiring reconfiguration is
recognized, the use of a pre-computed reconfiguration solution that fits the recognized scenario
could allow reconfiguration to take place without requiring the real time execution of
computationally intensive optimization algorithms.

We investigated methods for pre-computed reconfiguration that consider the layout of the
deployed sensor field in computing a set of configuration and operating options that are optimal
for given scenario permutations (combinations of factors including loss of clusters, low power
reserve at a cluster, externally supplied operating mode, and disturbed communications) [40]. A
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Genetic Fuzzy Rule Base System (GFRBS) was used to create and optimally tune fuzzy rules
from an initial population of rules. In the five-node problem studied, the resulting rules yielded
the optimal route if one node was lost. If the autonomous entity (node, agent) is able to recognize
a new scenario that requires reconfiguration, the system may be able to apply the pre-computed
rules determined by the offline tuning of the GFRBS to reconfigure itself to an optimal
configuration that is appropriate for the recognized scenario. Potential benefits of pre-computed
optimal configuration include a longer field life due to reduced power consumption, a reduction
in the likelihood of detection by the enemy due to reduced communications during
reconfiguration, a wider array of reconfiguration options than is possible if optimization must be
computed in real time, the use of more powerful optimization algorithms, and a more seamless
transition to a new configuration.

Performance Guided Reconfiguration

The initial network design and layout of a sensor field considers the required network
performance [41]. However, as sensors fail due to battery exhaustion or other reasons,
performance degrades and detection, localization, or tracking coverage holes will develop unless
additional sensor resources maintain the required performance. On the other hand, field
performance requirements may not be constant over all phases of field lifetime. If performance
requirements decrease over some period, unessential sensors could be turned off to conserve
resources. If performance requirements increase, the new performance goal could be met by
awakening redundant sensors as needed. We developed performance-guided reconfiguration
(PGR) to reconfigure the field to enable performance requirements to be met while conserving
resources.

This work considered the application of PGR in a sensor network designed to localize a
target based on binary detection reports from sensors arranged in clusters. A PGR algorithm was
applied to reconfigure a sensor network by awakening dormant redundant sensors as needed to
meet desired performance goals when sensor failures occur [42]-[44]. Redundant sensor nodes
placed in the network were dormant until they replaced a failed sensor. When a sensor fails, PGR
identifies candidates for replacing the failed sensor from the set of available redundant sensors,
and uses a performance-based cost function to select the candidates to be activated [42]. The
PGR algorithm is applied locally within the cluster that has a failed sensor. Some initial
simulation results of localized PGR, in which PGR is applied at the cluster level in a multicluster
sensor network, were described in [44].

In PGR, multiple sets of redundant inactive sensors that could be activated to meet the
performance criterion within the cluster are initially identified as candidates for replacing the
failed sensor. The candidate sensor set that optimizes cluster performance is selected using a cost
function that weighs additional criteria of interest. The cost function provides the basis for
ranking all possible solutions and for adjusting the weights of the individual performance
objectives in terms of the total cost for a candidate set S.

4 Nj

Cost(S) = Nc + E (ri - 0r) +
j=1 (9)
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In (9), rand q are adjustable constants, N, is the total number of sensors in candidate set S, c is a
flat cost per sensor, and r is the radius of a no-penalty search area around the dead sensor. The
distance of candidate sensor i from the dead sensor is ri, Nj is the total number of sensors from
candidate set S that are in areaj, and Rj is the number of redundant sensors available in areaj
(area refers to one of four sectors formed by dividing the area around the dead sensor bounded
by the search radius r into four parts).

The three terms appearing from left to right in the cost function are referred to as term one,
term two, and term three. The cost function weighs the absolute sensor cost (term one), the
distance of the candidate sensor from the failed sensor (term two), and the cost of utilized
redundant resources (term three). Term two is applied only if the candidate sensor is outside a
no-penalty search area such that ri-r is positive. A no-penalty search area is an area bounded by
the initial search radius. The search radius is increased if sensors in the area bound by the initial
search radius do not meet the performance requirement, and term two is then non-zero.

For a simple demonstration of localized PGR, we compared the performance of a
multicluster network using localized PGR, a nearest-neighbor reconfiguration approach, and an
approach without field reconfiguration [44]. Without PGR, coverage performance degraded as
sensors were lost. With PGR, every time a sensor failed, the respective cluster was reconfigured
to maintain coverage. In this way, clusters made local reconfiguration decisions to achieve the
global field performance goal. A more detailed example of PGR is described in the
SIMULATION section of this report.

Determining whether PGR is needed after loss of a sensor requires the intensive
computation of the CRLB at many potential target locations within the cluster. Also, the process
of determining the candidate sets of sensors that will attain the required performance is
computationally intensive. Developing more efficient methods for computing the CRLB and for
carrying out PGR using pre-computed reconfiguration are topics for future work. Other topics for
future PGR work include the development and simulation of algorithms for turning sensors on
and off as performance requirements change over time, and optimizing the placement of
redundant sensors, especially in the area where clusters overlap.
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V. INTELLIGENT SOFTWARE AGENTS

An agent is an entity that acts in the place of another in order to bring about a desired result.
Agent systems and multi-agent systems are a new and robust paradigm for designing flexible
architectures for systems with disparate needs. Agents are especially suited for environments that
are open and distributed [16]. An agent is characterized by the concepts of situatedness,
autonomy, and flexibility. Multi-agent systems consist of several interacting agents and are
appropriate for cases where data are distributed and incomplete, individual agents have a limited
viewpoint, there is no global control, and computation is asynchronous. Multi-agent systems
provide a level of abstraction that enhances computational efficiency, reliability, extensibility,
maintainability, responsiveness, flexibility, and reuse. With these properties, multi-agent system
technology appears to be an ideal candidate to realize autonomous distributed system designs
and provides a framework that may be useful in achieving survivability [15], [45].

In this work, agents provided intelligence within the system with a goal of increasing the
network field life without adversely affecting performance [34]-[36]. A multi-agent system was
realized by wrapping selected cluster nodes and master nodes with an agent, with all
communication and system actions routed through the agent. Agents supported actions within
nodes and interactions between nodes in many ways. Agents facilitated the distribution of
information, facilitated the distribution of the data fusion, control, and coordination functions,
supported achieving survivability, and provided a high degree of autonomy when needed.

A scheme of 'functional agents' was used to allow agents to carry out multiple functions at a
node [35]. Functional agents performing different functions were stacked on the same physical
hardware. As a result, there was an increase in the number of nodes in the system that could
perform the various functions and the hardware requirements were simplified. Thus, stacking
functional agents is a method that uses the abstraction provided by agents as an alternative for
simplifying hardware requirements in sensor networks.

A variety of agent paradigms applicable for resource management was developed and
compared using simulations [34]-[36] (see appendix). Such a comparison provides an increased
understanding of how the performance of the sensor network changes with the number,
functionality, and presence of agents at different levels in the network hierarchy. A modular
simulation framework based on object-oriented design was developed to facilitate the
implementation and comparison of different agent-based scenarios. This framework was used to
generate data for detailed analysis of component interactions and for evaluation of the integrated
system. Results compared the number of computations, number of communications, tracking
performance, and field life for Monte Carlo simulations of scenarios in which different agent
paradigms were employed. These comparisons should assist designers of agent-based systems in
utilizing agents to their best advantages in scenarios similar to the wide range of those explored.

We also developed a measure of the machine intelligence of an agent-based system, the
Machine Intelligence Quotient (MIQ) [34], [36]. The MIQ may make it possible to predict the
performance of agent-based alternatives having different complexity. Such predictions may be
useful in deciding from among the myriad of different agent-based alternatives. In its present
form, the MIQ is quantitative. Refinements to introduce indicators that give a better reflection of
quality are topics for future work.
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Another area for future work is the use of cooperating agents in supporting survivability
through enhancing the network's ability to adapt and evolve to reduce the effectiveness of future
threats. Agents might recognize the type of attack or accident that caused damage and take steps
to either reconfigure the network or adjust operating modes in order to reduce future
vulnerability to that threat.

Gliders as Agents for Undersea Data Collection

In another research thrust, gliders were considered for data collection in undersea WSN
applications [46]. Undersea data collection is a significant research challenge since it must
accommodate the power and bandwidth constraints of the WSN infrastructure and the specific
needs posed by the application. Autonomously navigating gliders provide a possible solution for
data collection tasks in civilian and military applications. The most important factors in the use
of gliders are navigational speeds, routing, the structure of the WSN hierarchy, and the effect of
oceanic currents. Glider characteristics important for use in data acquisition for target detection
were reviewed. Some exemplary glider routing algorithms were developed and tested in
simulations. Simulations were used to compare the time required for the glider to collect data
from all sensors in each routing scheme, consider the effect of oceanic currents, and illustrate the
behavior of gliders under different network topologies and assumptions. The speed at which
current gliders travel introduces delays in acquiring data from the sensor with longer delays
occurring for more distant sensors.

The literature review raised issues such as the effect of oceanic currents on performance. It
was observed that, irrespective of the direction of glider movement in reference to that of the
currents, the glider must reduce its speed to maintain its course and navigational accuracy.

Routing a glider in single-tier networks requires the glider to visit each sensor in the
network. Hierarchical sensor networks use a cluster paradigm in which the sensor nodes report
their data to their respective cluster nodes. The glider can be made to visit a cluster node in such
hierarchical networks to provide several advantages. Visiting only one cluster node instead of
each sensor node saves the glider significant energy and time in collecting data from the entire
network. The effect of oceanic currents, obstacles, or internal positional error might change the
course of the glider to affect its ability to visit all the sensor nodes on the intended path. In
hierarchical network structures, the glider visits the cluster node located at the center of each
cluster. If the glider loses its bearing, then it might reach any sensor nodes on the periphery of
the cluster and receive the information updates for that entire cluster. Simulations of glider
routing in a two-tier hierarchical structure provided more flexibility, reliability, and speed of data
collection from the sensor nodes than can be achieved in single tier networks.

This work is a step towards developing realistic scenarios and assessing glider performance
under different circumstances that will enhance the application of glider technology for data
acquisition in sensor networks. Future work may include adaptive routing in which the glider
dynamically changes its route as it processes the sensor data. Various assumptions made in
developing the simulations could be eliminated in the future when more accurate data becomes
available e.g. the deployment of the sensors can be assumed to be random instead of symmetric.
The research could be extended to explore and simulate additional applications such as hardware
reconfiguration of sensor networks in which the glider can physically replenish dead sensors.
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VI. SIMULATION

Simulation was used to develop and test alternative Micro-DADS realizations and
algorithms, consider tradeoffs, and evaluate the ability of the distributed system to achieve its
goals when presented with a set of operational challenges. For initial evaluation of each Micro-
DADS alternative, high level and simplified representations of fusion, classification, control,
communications, and other processes were employed. As new alternative algorithms, strategies,
and agents were developed, they were integrated and tested in simulations. The utilization of
battery energy, communication, and computational resources was modeled at each system node
in order to provide the opportunity to study tradeoffs involved in designing power efficient
coordination, communication, and reconfiguration strategies.

Underwater Target Tracking Using Sensors that Report Range and Bearing

Three-Tier Hierarchical Distributed Sensor Network

Initially, a modular system level simulation of a three-tier hierarchical distributed sensor
network was developed for the underwater target tracking application [33]. The three-tier
network shown in Fig. 7 includes sensor nodes (small circles) that report measured range and
bearing of submarine targets to cluster nodes (black dots) that perform local data fusion. The
large circles represent cluster nodes at which the master function may be carried out. At a given
time, one of the cluster nodes carries out the master function (diamond) by gathering the data
from the cluster nodes and performing global data fusion, tracking, and communication with the
outside command center.
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Fig. 7. Three-tier hierarchical sensor network architecture.
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The Node Model

A node model was used to simulate events and resource consumption occurring at each node
(Fig. 8). In the system level simulation, a field layout is initially specified, the target track is
generated, and events are simulated at each time step. First, the target position is related to the
range of each sensor to facilitate measurement of the target position by the sensors. Next, a
communications model runs to transfer information from one node to the other. Next, the node
models are run.

Inbox

Coordination
Module

Sensing or Data
Processing Module

Resource
Uilization Module

I Outbox

Fig. 8. Operational flowchart of a node model.

The initial Micro-DADS realization utilized a three-level computational structure that
includes an organization level, a task planning level, and a task execution level at each node. A
fuzzy rule-based inference system and other advanced methods were considered for use in task
planning, but offered no benefits for the level of implementation detail used in this research. At
the beginning of each time step, a node's organization level receives information such as
commands, communication counts, and mode of operation from the communications module
through an inbox. Next, at the node's task planning level, a coordination module is run to
coordinate events based on the received information. In a sensor node, the coordination module
controls simple functions such as the sleep-awake mode of the sensors. In a cluster or a master
node, the coordination module completes tasks such as synchronizing, organizing, or
reconfiguring the network. Next, at the execution level, a sensor node executes the sensing
module, and a cluster or master node executes dat4-processing module to run data fusion
algorithms based on distributed EIF filtering [27], [33]-[36].

After execution of the sensor or data processing module that is appropriate for a node, the
resource utilization module executes in order to account for the power used by the
communications and computations occurring during that time step. The following section
presents more detail about the resource utilization module.

The communications model is responsible for representing salient features of the sensor
network communication. A simple outbox-inbox communication scheme transfers the data
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between the nodes. The data is transferred from the transmitting node outbox to the destination
node inbox. At the end of a time step, the node sends information to its outbox for transmission.
The communications model takes the information from outboxes and sends the messages using a
communications protocol and appropriate routing to the appropriate inboxes. Hence, at the
fastest, messages placed in an outbox at simulation instant t will be available in the destination
inbox at simulation instant t+l. However, computations at the routing nodes, network bandwidth,
environmental problems, multihop routing, and queuing at the sensors in the routing path may
introduce delays in the communication of information to the destination. Delays may affect
various aspects of the system performance. For example, communication delays would degrade
the target tracking performance. The communications model introduces communications delays
due to the above factors.

Resource-Based Modeling

Network performance and lifetime depend on the battery energy, communication, and
computational resources available at each system node. The first step in optimizing performance
and lifetime involves analyzing the sensing, data processing, communication, and coordination
modules of a node and modeling their impact on utilization of battery energy, communication,
and computational resources. We developed a resource-based modeling framework for system
level simulation of sensor networks to offer flexibility and fast generation of various operational
network scenarios. This simulation framework provided the opportunity to study tradeoffs
involved in designing coordination, communication, and reconfiguration strategies that preserve
power, communication, and computational resources [33].

The computational and power resources of each node utilized by sensing, data processing,
communications, and coordination events are tabulated. Resources utilized by communications
are tabulated for each node by the communications model, and those utilized by sensing, fusion,
and coordination are tabulated at each node using the resource utilization module (Fig. 8).
Proportionate battery draining weights are assigned to these tabulated events depending upon the
actual practical node model used for the simulation. Based on the assigned weights, the power
dissipated and the remaining battery energy are computed for each node at each time step.

Power utilization drains the battery and affects the node and field life. Different battery
models were evaluated in order to allow power utilization to be computed accurately. A
stochastic model of the battery capturing the essence of the charge recovery mechanism was
implemented to account for the relaxation phenomenon and the rate capacity effect [33].

Coordination schemes were developed in this work with the aim of prolonging the sensor
network lifetime by efficiently utilizing available resources. These schemes allowed
reconfiguration of the sensor network to make more optimal use of available resources and to
take advantage of redundant resources. Simulation results show that reconfiguration of sensor
networks improved performance and lifetime over that of a sensor network having a fixed
configuration.

Object- Oriented Agent Simulation

The initial system level simulation of an underwater distributed sensor network was used as
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the basis for developing an object-oriented framework for simulating agents in a distributed
sensor network [34]-[36]. The framework is not restricted for use in this application, but can be
easily adapted for simulating agent-based sensor networks for other applications. Since the
system under consideration is large, having a large number of entities, different implementation
strategies, and detailed interactions between the different entities, simulations were developed
using a modular approach. Software modules were developed to mimic the entities and processes
that would be present in an actual physical system. The system was partitioned into components
that can be modeled at the lowest behavioral levels. This modular approach gives the flexibility
and extensibility of changing, adding and removing modules for simulating different scenarios
and strategies at a fast pace. This framework utilized the advantages of object-oriented
programming techniques in system design. This framework allows easy scaling of the sensor
network. Nodes can be added or removed, different communication and battery models can be
simulated, and different algorithms can be easily employed within the agents thus facilitating the
simulation of a large number of scenarios in a short time.

Fig. 9 shows the object diagram of the system that includes multiple master, cluster, and
sensor nodes. Agents are present on the master and the cluster nodes. The sensor nodes report
measured range and bearing of target to cluster nodes that perform local data fusion. For a
system that does not include master nodes, some cluster nodes will include a master agent in
addition to the cluster agent.

i Master sutn Clust]fea

Fo 
tommunication

Sensor
Node

Fig. 9. Object diagram of the simulation framework.

For the outbox-inbox communication, a localized optimization scheme was used to route the

data through the network [39]. Localized optimization uses the fact that cluster nodes have
access to information regarding the residual power levels of the cluster's sensor nodes. This
information is used within the cluster for localized routing reconfiguration.

Operational challenges included commands specifying various operating modes and theater
information received from the command center, a rich set of target tracking and classification
scenarios, undersea environment, field configuration, field topology, loss of clusters and sensors,
loss of communications, computational load, and data transmission latency. Simulation was used
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to provide insight into the parameters that impact overall performance of Micro-DADS, expose
trade-offs, allow design alternatives to be explored, and facilitate the identification of
requirements. In order to develop a quantitative evaluation of the performance of decentralized
alternatives, decisions were compared to those of a hypothetical entity that makes decisions
using a centralized paradigm based on the exact and current knowledge of every state of every
entity in the entire system [7].

Visualization

We explored the use of visualization and virtual reality environments to provide the visual
effects of real scenarios as a tool to understand, interpret, evaluate, and compare tradeoffs and
efficiency. The Enabling Technology Laboratory (ETL) in the UAB Mechanical Engineering
Department collaborated in the visualization work. The ETL has a 128 processor LINUX cluster
and visualization infrastructure. This includes a 9-tile Viz-Wall with 9 associated processors
projecting a very large-scale high resolution image in a synchronized fashion, and a Viz-Box
with high performance processors to perform virtual reality in a three dimensional environment.
A high-end server computer acquired for this project was employed as a database server on
which visualization queries were performed. Custom visualization algorithms tailored for Micro-
DADS interrogation were developed and validated for simulated data.

We used bathymetric data to develop a visualization of target tracking in an undersea
environment [47]. A three-tier network using sensors that measure range and bearing was used
(Fig. 7). In order to visualize implementations of the tracking algorithms developed using
MATLAB, pertinent parameters and output data were extracted from the sequential functional
simulation and stored in a text data file. The data file lists the positions of the sensors, pattern of
the clusters, coordinates of the target and corresponding estimated positions at each time step.
This data was loaded into the program developed to visualize the seabed and then the simulation
was performed using frames to denote the target position at each time step. The mouth of the
Chesapeake Bay was used as the seabed for the initial development. Glyphs were used to denote
various items in the simulation, including sensors, the range of detection of sensors, a submarine
target, the history of the target position, the current estimate of target position, and the history of
the estimate (Fig. 10).

Using the FLTK graphical user interface toolkit, a graphical user interface for this
visualization was built to enable a nice interaction with the algorithms. In order to offer a high-
resolution visualization and to have stereoscopic display the developed OpenGL-based
visualization code was ported into Vis-Wall and Vis-Box facilities available at the ETL. Future
work could utilize the Vis-Box for a fly-through view of the total undersea region of interest.
The footprint of the Vis-Box is 8x8 feet and it is a few inches shy of being 8 feet tall, making it
close to an 8x8x8 foot cube. With this system, researchers could visualize their data in the
stereoscopic virtual environment. Imagery is projected to the rear of a semi-rigid or flexible
screen, which is mounted to the front of the unit. Applications software would be used to
generate separate images for each eye. Users wear lightweight, inexpensive polarized eyeglasses
and see a stereoscopic image.
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Fig. 10. Visualization of the tracking of a submarine in the mouth of Chesapeake Bay using ten
clusters with each cluster having two sensors. The actual target path is shown in gray with the
sensor based target track estimate in white. The cluster having the target currently within its
range is highlighted in dark gray.
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Target Localization Using Sensors that Report Binary Detections

The object-oriented simulation framework for distributed sensor networks was extended to
use sensors that report binary detections and to use the ML estimation framework for target
localization as described in the earlier Maximum Likelihood Target Localization Using Binary
Sensor Data section of this report [19], [25]. A detailed simulation was performed to
demonstrate Performance Guided Reconfiguration [42]-[44].

Simulation of Performance Guided Reconfiguration

The use of performance-guided reconfiguration (PGR) was studied in simulation. When
sensor failures occurred, PGR was used to awaken dormant redundant sensors as needed to meet
performance goals. The sensor field layout corresponds to a 9-cluster distributed sensor network
consisting of 49 binary sensors in each cluster (Figs. 11-12). Cluster and master nodes are not
shown. The field includes 441 active sensors at integer positions and 324 redundant sensors
between active sensors. Clusters were positioned to overlap with neighboring clusters such that
the nominal sensor field would satisfy a performance criterion for all target locations within the
coverage area shown bounded by the dotted line. The gray areas show overlapping sensor
positions between neighboring clusters. The area shown by the dotted squares denotes the
coverage area, a square of side 12 units.
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Fig. 11. Layout of the 9-cluster field with 441 active sensors at integer positions shown as double
circles, and 324 redundant sensors between active sensors shown as smaller circles. The area
shown by the dotted square denotes the coverage area, a square of side 12 units. The gray area
shows overlapping sensor positions between neighboring clusters.
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Fig. 12. Layout of the field showing overlapping numbered clusters. The area of overlap, shown
in gray, is 2 units wide. The area inside the dotted line is the coverage area.

The target was made to appear randomly throughout the coverage area of the field, and
assumed a new position every 25 simulation instants. At every simulation instant, the sensors
made binary decisions about the presence of the target for each of ten different thresholds. The
target localization was done using the two-step approach [25]. Based on binary sensor decisions
from all ten timeframes, the respective cluster nodes first formed a weighted average (WA)
estimate of the target position. This WA estimate of the target position was then used as a
starting point for a Nelder-Mead search to obtain the final target position. This two-step
approach for target localization helped to achieve a localization performance at the CRLB.

The power consumption of all the nodes in the field (sensor, cluster, and master) was
considered using resource-based modeling. The assigned weight for power utilization was
highest for communications transmission, followed by the weights for sensing, receiving
communications, and maintaining an awake state. As the simulation progressed, node batteries
were depleted depending on the respective activities. In order to speed up the execution of the
simulations for this work, all sensor node batteries were initialized at 10 percent of full energy
capacity at the start of the simulation. The cluster and master node battery capacities were
initialized to high values to guarantee that they would not die prematurely to end the field life,
insuring the simulations provide a good demonstration of improvements offered by PGR.

Sensor decisions were routed to respective clusters using one-hop communication. Clusters
used multi-hop communication to communicate decisions to the master node. The routing
algorithm was PMR. Each node in the sensor network (sensors and clusters) maintained a routing
table formed at the beginning of the simulation. Routing tables were updated every time that a
sensor failed [39].

When a sensor failed, a decision of whether or not PGR would be required to run was made.
The CRLB for the RMS localization error in target position estimate, b3, was computed at 1681
positions (41 x4 1) within the cluster that included the failed sensor. The CRLB for each target
position evaluated was then compared to an RMS error limit of 0.1610. This limit served as the
maximum allowable value for the computed RMS error. If the CRLB for any of the evaluated
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positions exceeded the limit, it was determined that reconfiguration was necessary, and only
then, localized PGR was run in the respective cluster.

Localized PGR resulted in the choice of the optimal redundant sensor set that would be
awakened to replace the dead sensor. PGR evaluated all the possible sets of replacement sensors
available in the vicinity of the dead sensor, and computed the cost of every set that could meet
the limit of 0.1610. The cluster was then reconfigured by waking up the sensors belonging to the
set that had the lowest associated cost. A representative cost function was utilized. The weights
for the constants in (9) were chosen to be equal, with that for resource utilization (q = 0.1) equal
to that for performance (y= 0.1).

In order to show the field performance at the start of the simulation, the initial CRLB surface
was computed at 1681 positions (41x41) within each cluster to show the achievable localization
error limit for various target positions using the nominal layout of active sensors (Fig. 13a). The
performance criterion was met for all target locations considered (Fig. 13b).
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Fig. 13. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
with 441 active sensors at the beginning of the simulation. (b) Computed CRLB with the
performance criterion of 0.1610 for the RMS error shown as a plane. The entire coverage area
met the performance criterion, which is indicated by the fact that the CRLB surface is bounded
by the plane for all target positions inside the coverage area.

The CRLB surface was computed at several representative simulation instants to show the
effects of failed sensors and to show that performance was restored with PGR. The first sensor
was lost at simulation instant 1473 from cluster 7, with a consequent loss in performance such
that a fraction of the coverage area near the failed sensor did not meet the performance criterion
(Fig. 14). PGR reconfigured the network by activating redundant sensors in order to allow the
entire coverage area to meet the performance criterion (Fig. 15). As additional sensors were lost
during the simulation run, the field performance was compared to the criterion, and PGR was
used to replace lost sensors if required to allow the performance criterion to be met.
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Fig. 14. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
after the death of the first sensor in cluster 7 at simulation instant 1473. (b) Computed CRLB
with the performance criterion of 0.1610 for the RMS error shown as a plane. A fraction of the
coverage area near the failed sensor did not meet the performance criterion (shown by peaks
above the surface of the plane).
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Fig. 15. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
after the death of the first sensor in cluster 7 at simulation instant 1473, but with nearby
redundant sensors awakened usin'g localized PGR. (b) Computed CRLB after PGR with the
performance criterion of 0.1610 for the RMS error shown as a plane. The entire coverage area
met the performance criterion, which is indicated by the fact that the CRLB surface is bounded
by the plane for all target positions inside the coverage area.
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Five sensors died in clusters 5, 6, and 8 at simulation instant 1645, with a consequent loss in
performance such that a fraction of the coverage area near the failed sensor did not meet the
performance criterion (Fig. 16). PGR reconfigured the network to allow the entire coverage area
to meet the performance criterion (Fig. 17).
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Fig. 16. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
after the death of five sensors in clusters 5, 6 and 8 at simulation instant 1645. (b) Computed
CRLB with the performance criterion of 0.1610 for the RMS error shown as a plane. A fraction
of the coverage area near the failed sensors did not meet the performance criterion (shown by
peaks above the surface of the plane).
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Fig. 17. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
after the death of five sensors in clusters 5, 6 and 8 at simulation instant 1645, and nearby
redundant sensors awakened using localized PGR. (b) Computed CRLB after PGR with the
performance criterion of 0.1610 for the RMS error shown as a plane. The entire coverage area
met the performance criterion, which is indicated by the fact that the CRLB surface is bounded
by the plane for all target positions inside the coverage area.
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The simulation was terminated at simulation instant 1841 because the redundant resources in
one of the clusters (cluster 8) were exhausted by PGR. However, the entire coverage area met the
performance criterion at instant 1841 (Fig. 18).

Thus, the results show that PGR used available redundant resources to increase the time over
which the performance criterion could be achieved throughout the field. The time over which
PGR could be used to allow the performance criterion to be met over the field would increase if
additional redundant sensors were placed in the field. If the simulation would have been
continued past simulation instant 1841, PGR could have been applied in clusters where
redundant resources remained, but PGR could not have been applied where no redundant
resources remained. Eventually, as additional sensors were lost in clusters in which PGR could
no longer be applied because redundant resources had been depleted, coverage holes in which
the performance criterion could not be met would form and performance would degrade.
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Fig. 18. (a) Computed CRLB for the RMS error in the estimate of D versus X and Y for the field
at the end of the simulation at instant 1841. The simulation ended because the redundant
resources in one of the clusters (cluster 8) were exhausted. (b) Computed CRLB with the
performance criterion of 0.1610 for the RMS error shown as a plane. The entire coverage area
met the performance criterion, which is indicated by the fact that the CRLB surface is bounded
by the plane for all target positions inside the coverage area.

By simulation instant 1645, 55 sensors had been lost, with PGR used to awaken redundant
sensors as needed to maintain performance at the specified criterion (Fig. 17). However, it is
informative to consider how the performance would have degraded if the 55 sensors had been
lost and PGR had not been used to awaken redundant sensors as needed to maintain
performance. Fig. 19 shows the field layout of active sensors at instant 1645 after the death of 55
sensors in different clusters without reconfiguration to replace lost sensors. The CRLB was
computed for the field without the 55 sensors that failed and without the sensors awakened using
PGR. Without the sensors wakened using PGR, significant coverage holes existed for large
portions of the field (Fig. 20).
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Fig. 19. Field layout of active sensors (circles) at the end of the simulation at simulation instant
1645 after the death of 55 sensors in different clusters without reconfiguration to replace lost
sensors. The dotted line shows the coverage area.
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Fig. 20. Computed CRLB for the RMS error in the estimate of D versus X and Y for the field at
simulation instant 1645 after the death of 55 sensors in different clusters without reconfiguration
to replace lost sensors. The performnance criterion of 0.1610 for the RMS error is shown as a
plane. A large portion of the coverage area did not meet the performance criterion (shown by
peaks above the surface of the plane).
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Figures 21-30 show histograms of a) the percentage battery life remaining for each sensor in
all 9 clusters and b) the number of sensors grouped by percentage battery life remaining in all 9
clusters at simulation instants 100, 200, 500, 1000, and 1500. Recall that the simulations were
started with a battery life at 10 percent for all sensors in order to speed the execution of the
simulation. As a consequence of the balanced power utilization achieved through sensor
clustering and the PMR routing algorithm employed in the distributed system, along with the
random target path of the simulation, the battery life decreased in a relatively uniform manner
across clusters and across the sensors within a cluster over the time course of the simulation
(Figs. 21-28). When a sensor's remaining battery life went to zero, the sensor died and redundant
sensors were awakened if necessary using PGR. The first sensor died at simulation instant 1473
and the field was reconfigured using PGR. Thus, the plots at simulation instants 100, 200, 500,
and 1000 reflect observations made before any sensors died, whereas the plots for simulation
instant 1500 reflect observations made after some sensors had died and the field had been
reconfigured. By simulation instant 1500, some sensors in clusters 7 and 8 had died, and PGR
had been used to awaken some sensors in clusters 7 and 8 to maintain performance. At
simulation instant 1500, the sensors in clusters 7 and 8 that had already been awakened using
PGR are those sensors having a battery life at near 10 percent (Figs. 29-30).
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Fig. 21. Histograms of battery life remaining for the sensors within each cluster at simulation
instant 100.
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Fig. 22. Histograms of the number of sensors grouped by percentage battery life remaining
within each cluster at simulation instant 100.
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Fig. 23. Histograms of battery life remaining for the sensors within each cluster at simulation
instant 200.
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Fig. 24. Histograms of the number of sensors grouped by percentage battery life remaining
within each cluster at simulation instant 200.
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Fig. 25. Histograms of battery life remaining for the sensors within each cluster at simulation
instant 500.
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Fig. 26. Histograms of the number of sensors grouped by percentage battery life remaining
within each cluster at simulation instant 500.
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Fig. 27. Histograms of battery life remaining for the sensors within each cluster at simulation
instant 1000.
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Fig. 28. Histograms of the number of sensors grouped by percentage battery life remaining
within each cluster at simulation instant 1000.
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Fig. 29. Histograms of battery life remaining for the sensors within each cluster at simulation
instant 1500.
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Fig. 30. Histograms of the number of sensors grouped by percentage battery life remaining
within each cluster at simulation instant 1500.
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VII. CONCLUSIONS

The current DADS demonstrates feasibility of an advanced concept, but does not possess a
high degree of autonomy and the associated advantages, including reduced vulnerability to
detection and destruction by the enemy. This research was motivated by the need to replace the
centralized management employed in the current DADS with decentralized methods appropriate
for the distributed Micro-DADS, and represents the state-of-the-art in distributed systems
research.

The decentralized organization of Micro-DADS inherently supports survivability by
facilitating the incorporation of redundancy, the balanced use of network resources, and use of
local optimization that achieves global optimization. In this work, organizational and
computational hierarchies for intelligent distributed systems were identified and explored.
Methods for distributed detection, localization, and target tracking were developed. Strategies to
allow the sensor field to survive attacks, failures, and accidents were identified and used to
develop methods for optimizing performance and field life. Intelligent software agents were
developed to facilitate the exchange of information, support achieving survivability, and
facilitate the distribution of important system functions that include control and coordination.
Computer simulations were used to evaluate algorithms and alternative approaches. Simulations
were used to develop and test alternatives, consider tradeoffs, and evaluate the ability of the
system to achieve its goals when presented with a set of operational challenges.

Advances in networking, microelectromechanical systems (MEMS), and sensing
technologies are likely to stimulate the proliferation of distributed systems and sensing. Many of
the research challenges in distributed sensing and control posed by the Micro-DADS concept are
general and overlap those in other military and commercial fields. Therefore, the contributions of
this research will likely affect other distributed sensing systems in military as well as commercial
environments.

Research Infrastructure Development

The DEPSCoR emphasis on infrastructure development provided a significant opportunity
for this grant to impact research infrastructure of the participating universities and the State of
Alabama. The project contributed to high-priority efforts, support of a new program, student
training, and new collaborations between faculty members having complementary expertise.

At The University of Alabama at Birmingham (UAB), the project further leveraged the
resources being allocated starting in 2002 to build the area of high performance computing and
simulation, an effort involving the focused recruiting of new faculty members and students and
the development of the Enabling Technology Laboratory to support high performance
computing, simulation, visualization, and virtual reality within the School of Engineering. New
faculty collaborations and the grant's financial support for graduate assistantships stimulated the
early growth of a new Computer Engineering Doctoral Program shared by UAB and the
University of Alabama at Huntsville (UAH), improving the State's capacity to educate students
in an area recognized as critical to national defense and future economic development of the
State. Dr. Thomas C. Jannett served as project director. Dr. Wells from the University of
Alabama at Huntsville considered issues related to parallel computation, performance,
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simulation, and distributed reconfigurable systems. Dr. Alan Shih and Dr. Roy Koomullil of the
UAB Department of Mechanical Engineering and the Enabling Technology Laboratory were
primarily responsible for exploring visualization and virtual reality simulations. Each of the
participating faculty members served on the committees of students supported by the research. In
addition to interacting in meetings and standard methods of communication, the investigators
developed and utilized Internet conferencing, with weekly Internet conferences held to link UAB
and UAH participants during the middle of the project period. In addition to the faculty members
supported by the budget, several faculty members were involved in the project either directly or
through participation in graduate student supervisory committees.

The work provided rich educational experiences for a diverse set of graduate students in the
areas of distributed systems, agents, intelligent control, simulation, and high performance
computing. Students participated in the research by serving as graduate assistants and through
completion of projects, theses, and dissertations. The budget included support for several Ph.D.
students in each year. Partial support for M.S. students is budgeted each year to allow promising
master's level students to participate in the research, gain experience, and make a more informed
decision about a research career. Eleven graduate students, nine at UAB (three Ph.D. and six
M.S.) and two at UAH (two Ph.D.), served as graduate assistants or took on projects related to
the research over the three-year grant period. Two Computer Engineering Ph.D. students
supported by the grant completed doctoral dissertations that addressed key defense-related
research problems in areas related to distributed systems, simulation, and high performance
computing. They have joined other universities as faculty members. Three Ph.D. students are
nearing completion of their degree requirements in the areas of agents, intelligent control, and
reconfigurable systems. Six students have completed the Masters Degree in Electrical
Engineering (M.S.E.E.). Four are working in industry and two have been accepted in Ph.D.
programs. Each of the five Ph.D. students and three M.S.E.E. students wrote and presented a
conference paper. In addition, two undergraduate students became involved in the research
through the departmental honors program.
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I. Introduction

Sensor networks employing a large number of relatively inexpensive sensors having a
limited detection range and communication capability are an area of significant research interest
[1]. For a network having a large number of sensors, a fusion center can make a final decision
about a target's presence or absence with a decision fusion rule that uses the total number of
detections reported by local sensors for hypothesis testing. However, a very large number of
sensors may be needed to achieve a high probability of detection (PD) and low probability of
false alarm (PF) performance [1]. Centralized methods such as this suffer from weaknesses
including a high vulnerability to failure and a lack of scalability. If the central entity or any of its
key components fails, the system cannot function. As the system complexity and size increase,
the system becomes limited by the processing and communication capacities of the central
manager.

This report considers distributed data fusion within multi-tier hierarchical sensor network
architectures. Employing repeated trials at different tiers facilitates achieving specified
probability of detection (PD) and probability of false alarm (PF) performances using inexpensive
sensors having a limited detection range and communications capability.

The Three-Tier Hierarchical Decision Structure

A hierarchical sensor network (field) is functionally organized into multiple layers. Entities
at the different network layers are responsible for reporting data to those at higher layers. A
three-layer generalization of a hierarchical sensor network is shown in Fig. 1. The figure and its
description can be extended to apply to other multi-tier sensor networks having more than three
tiers.

TOP LAYER

LOWER LAYER

Fig. 1. The three-tier hierarchical decision structure
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In this work, the function of the hierarchical sensor network is to detect the presence of a
target in a geographical area. The nodes (common sensors) at the lowest network layer are
responsible for sensing the presence of a target in their vicinity. Each sensor makes a decision
about a target's presence by comparing the intensity of a measured signal to a threshold. The
sensor node reports its decision to a middle layer node.

The middle layer nodes are responsible for fusing the data received from the common
sensors. The middle layer node applies an appropriate fusion technique (decision fusion or value
fusion) to decide about the presence of a target within the group of sensors that reports to it [2].
Each middle layer node transmits its decision to the top layer node. The top layer node fuses data
from all such middle layer nodes in the field to make a decision about the presence of a target
within the field. In this work, the middle layer node is referred to as a gateway node and the
group of sensors that report to a gateway node are referred to as the gateway neighborhood. The
gateways represent the paths through which low-level detections must pass through the network
in order to produce a detection at the field level.

The organization of the rest of this report follows. Section II considers two-tier sensor
networks and reviews system performance measures based on the probability of detection (PD)
and probability of false alarm (PF) presented in [1]. The two-tier approach is useful to design
sensor networks with a large number of low-level sensors, but does not present guidelines to
design hierarchical sensor networks that have more than two layers. In addition, the approach
does not provide sufficient degrees of freedom necessary to obtain the desired level of
performance (detection probability and false alarm rate). Section III extends the work presented
in [1] for networks with more than two tiers, and introduces the use of repeated trials to achieve a
desired performance. Section IV discusses the field level false alarm performance, and derives
design parameters useful in attaining a specified field level false alarm performance. Section V
describes the procedures applied to demonstrate the use of repeated trials to attain the degrees of
freedom needed to achieve a desired level of performance using multiple non-overlapping
gateway areas in a hierarchical network. Section VI presents the results, section VII gives the
discussion, and section VIII presents the conclusions.

2



II. Performance Measures for a Two-Tier Decision Structure

The approach in [1] described a two-tier sensor network (or gateway neighborhood) to
monitor an area using a large number of sensors randomly deployed over the region, and gave
probabilistic measures of performance in terms of detection and false alarm probabilities. The
work provided a necessary building block to test the usefulness of repeated trials in hierarchical
sensor networks that could have more than two tiers. This section reviews the work in [1]
describing two-tier sensor networks and corresponding performance measures applied to a single
gateway neighborhood in which a group of sensor nodes report to a fusion node that makes a
detection decision.

The Binary Hypothesis Testing Approach for Decision Making

Binary hypothesis testing is a special case of a detection problem in which the decision
space consists of only two possibilities (80 and 5, ) and there is a hypothesis corresponding to
each decision. For the problem considered in this work, the null hypothesis is Ho, and the
alternative hypothesis is H1. For the target detection problem, Ho denotes the event that a target is
absent, and H, denotes the event that a target is present.

The binary hypothesis-testing problem has four possible outcomes:

1. Ho was true, Jo was chosen: Correct decision

2. H, was true, J, was chosen: Correct decision
3. Ho was true, 45 was chosen: False alarm (also known as Type I error)
4. H, was true, 50 was chosen: Missed Detection (also known as Type II error)

Our aim is to be able to specify the rate of false alarms that occur at the field level, and
design the field accordingly.

Gateway Area Sensor Placement

As shown in Fig. 2 below, a total of N sensors are randomly placed in the region of interest
(ROL), a gateway area that is a square of area a2. The target's location in ROI is uniformly
random. The locations of sensors are independent with sensors identically distributed (iid) and
distributed uniformly in the ROI as follows.

1 a a
f (xiayi) 2 (_ 2 xy < )2

for i = 1 .. .N, where (xi,yi) are the coordinates of sensor i.
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Fig. 2. Region of interest (ROI), which is a neighborhood of area a2. Sensor placement is
uniformly random. The target is placed at the center of the ROL.

For a common sensor i in a gateway neighborhood, the hypothesis testing problem is

HI: si = ai + ni

Ho: si = ni

where ai, the power of the signal received, is determined using an isotropic energy model

a,= (2)
1+ aFdT  (

In (2), P, is the signal power emitted by the target at a distance zero from the sensor, a is an
adjustable constant (chosen to be 200), and n is the signal decay constant (chosen to be 2 or 3).
The distance between a target located at (x,, y,), and local sensor i located at (xi, y,) is

di =4 x _x)2 + (y _ y,)/. (3)

Noise at a local sensor i follows the standard Gaussian distribution n, = N(0,1).

Sensor Level Performance

Each sensor makes a detection decision if the noisy signal, si, exceeds a threshold. The
probability of detection at the sensor level is denoted as pd, and the probability of false alarm is
denoted as pfa. For every sensor, pfa is a function of the local threshold alone, and for a common
threshold, r, it is

pfa= -- J e 2 dt. (4)
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Similarly, for each sensorpd is calculated as

-(-s)2
pd-2 dt. (5)

r

Thus, pfa is set by r and is the same for all sensors, but pd differs from one sensor to another
since it is a function of di.

Gateway Level Fusion Rule

A gateway decides that there is a target in its neighborhood based on the number of sensors
reporting I 's as a statistic. It uses a threshold, TG, for making a decision

H,

N >
A=X11  TG (6)

i=1 <
H,

where Ii denotes the binary decision from a local sensor i, i.e., I, = {0, 1}. Ii takes the value I
when the sensor decides that a target is present; otherwise, it takes a value of 0. The probability
of false alarm at the gateway level, Pf, is

N
Pf = Pr{A = IE > TIHO}. (7)

i=l

Under hypothesis Ho, the total number of detections A = Xf] Ii follows a binomial (N, pfa)
distribution. Therefore, for a given gateway threshold TG, Pf is calculated as

Pf ,=rG, Y- f (-Pau (8)

Since pd differs from one sensor to another, the detections under hypothesis H1 do not
follow a binomial (N, pd) distribution, and therefore an expression for the probability of
detection for the gateway, Pd, is hard to derive analytically. Hence, the Central Limit Theorem
[1] is used to approximate Pd as follows.

a 1
2d2 K)- Pfa (9)

alrl rrj
2 

1 + r4 2Po )).Q _ rrdr+(l_4).Pfa.(l'Pfa) 
(10)

0 +- Q- Po 4

l+O'.r l+•.r



The use of polar coordinates in (9) and (10) is explained in [1]. The gateway level PD, Pd, is

calculated by substituting (9) and (10) in (11) below.

S=Q(11)

Equations 9 and 10 cannot be solved without using the Q function, defined in [1] as the
complementary distribution function of the standard Gaussian

t2
O(x)= e 2 dt. (12)

The integrals in equations (9) and (10) have been approximated.

The Q function is related to the complementary error function of x, erfc(x) as follows.

2,2-

eufc(x)= fr e 2dt

Setting t = -U- implies that dt = du with

2 - -- 1
erfc(x)= e  du-

= 2J,, --- e du

2 l e c2-5)
=2.-Q(Vix)

.. Q(x) :- erfc . (13)
2 ( Xi

Equation (13) can be used to compute the integrals in (9) and (10) and to compute Pd by
approximation with (11). A plot of Pfversus Pd for different values of the gateway threshold is
called the receiver operating characteristic (ROC). The ROC is useful tool for evaluating the
performance of the gateway and for comparing theoretical results with simulations.
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III. Improving the Performance of Hierarchical Networks through Repeated Trials

The approach described in the preceding section is useful to design two-tier sensor networks
[1], but does not provide sufficient degrees of freedom to obtain the desired level of performance
and does not consider hierarchical sensor networks that have more than two layers. The work in
[3] proposes a hierarchical decision structure, but does not provide sufficient degrees of freedom
to obtain the desired level of performance at every network layer if the common sensors have a
limited performance. This section proposes the method of repeated trials to achieve improved
performance at every layer of the multi-tier hierarchical network.

Repeated Trials

The following explains the process of repeated trials. For a gateway threshold TG, a target is
declared present if the number of detecting sensors is greater than or equal to TG. A decision
made using (6) based on the comparison of the number of sensor detections to TG constitutes one
trial at the gateway level. However, results show that good detection and false alarm
performances are hard to achieve with poor sensors unless the number of sensors is very high
[ 1 ]. A process of repeated trials is used to improve the performance at the gateway level and field
levels in the network. In order to improve the PD and PF at the gateway level, n such trials are
done, and the target is declared present only if the number of sensor detections meets or exceeds
the threshold TG, in say, T or more trials out of the n trials. By repeating trials, a higher PD and
lower PF are achieved. The same process of repeated trials can be done at the field level to
achieve a higher PD and lower PF at the field level.

The process of repeated trials affords better performance, and in addition, grants more
degrees of freedom (the new threshold and number of repeated trials) to use when designing the
network. The process can be easily understood from the following expression, which is used to
compute the new performances at the gateway level and fusion center level [4].

flEkI ~k(-~k (14)
kT k

In (14), p denotes the probability of the event in a single trial, P, denotes the probability achieved
through repeated trials, T is the new threshold applied, and n is the number of times that the trial
is repeated.

Gateway Level Performance with Repeated Trials

If a decision (6) about the presence of a target in a gateway neighborhood is made solely
based upon a single set of binary decisions from all the sensors in the gateway neighborhood, the
results are usually not satisfactory (Pd is low, and Pf is high). Repeating trials at the gateway
level can result in better performance. For repeated trials, a new threshold, Tg, is introduced that
requires that the threshold TG be satisfied in (6) at least k= Tg times out of the n times the
gateway trial is repeated.
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For repeated trials, using (14) the gateway level detection and false alarm probabilities are
given by

PDg=r Pd (1- P)fY-k (15)

PFg k=r, (fk (1- Pf)n- (16)

where Pd and Pf are the probabilities of detection and false alarm with a single set of binary
decisions from the sensors in the gateway neighborhood.

From (15) and (16), the gateway level probabilities of detection and false alarm are dictated
by the choice of Tg and the previously determined Pd and Pf. Since the number of repeated trials,
n, can be adjusted along with the new gateway level threshold, Tg, there are more degrees of
freedom in controlling gateway level performance (PDg and PFg) than there were for controlling
Pd and Pf. This first level of repeated trials is representative of the performance (PDg and PFg)
expected from a single gateway area if repeated trials are done, instead of using a single gateway
scan (6), to detect the target.

Additional Levels of Repeated Trials

In order to achieve more degrees of freedom in controlling performance (PD and PF), trials
can be repeated as many times as is necessary at any tier within the hierarchical network to
improve the performance. The target is assumed to be stationary for the entire duration of the
trials.

Field Level Performance

After every gateway carries out repeated trials, it reports nfg decisions to the fusion center in
a single epoch. For each gateway, the fusion center treats this report as a repeated trial. If the
number of detections reported for any gateway meets or exceeds the threshold k= Tfeld times out
of the nfg trials, the fusion center declares a target detection in the gateway area that reports the
highest number of detections in the time epoch. As described in [3], the field level probability of
detection is

nfg k
PDfeId = Y-Z g-1 (17)

k=Tfr,Idl [ •nfgpFgJ(l PFg )fg•jj

where Tield is the field level threshold, nfg is the number of gateway reports in one field level
epoch, ng is the number of gateways in the field, and PDg and PFg are the probabilities of

detection and false alarm achieved at the gateway level.
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A field level false alarm occurs when the target is absent and one or more gateways in the
field have Tfiead or greater detections out of the nfg decisions reported to the fusion center. From
(16), the probability that a gateway has equal to or more than TfiaId false alarms out of nfg
decisions sent to the fusion center is

nf..g (nfg')._),¢_,

Pjg*= j (Pnf g)'(1-PFg).nfg (18)
"m=Tf,, k. m M

The field level probability of false alarm is

fed= f(ngJ(P*)k(l~pF*)fl,-k (9

Equation (19) can also be expressed as

PFfetId = Pr(False alarm at least one gateway)

= 1 - Pr(False alarm at no gateway)

which can be rewritten as

PFfield =I - I)ng (20)

.' PFfleld = - ( -PFg*).

If the nfg decisions that were reported to the fusion center were used to carry out a gateway
level detection using nfg repeated trials instead of being used to make a decision at the field
level, the probability of detection PDg* for the gateway could be computed using (15). However,
the nfg decisions reported to the fusion center were not used to carry out a gateway level
detection. Instead, the nfg decisions were used to carry out a field level decision with PDfietd
given by (17). Note that PDg* is not required in computing the field level probability of
detection, PDfieId.

If the target is in a certain gateway neighborhood, it is assumed that the gateway would
report at least TJetd detections to the fusion center. The fusion center declares the target in the
gateway neighborhood that reports the greatest number of detections. Although other gateways
may satisfy the threshold, the target is localized in the neighborhood of the gateway with the
highest detection count; therefore, the term 'winning' gateway (the first term in (17)) may be
employed. Each of the remaining gateways can report up to a maximum of 1 detection less than
the number of detections reported by the winning gateway. Therefore, the second term in (17) is
raised to a power of (ng- 1) indicating that all gateways but the winning gateway are participating
in the event. The most important assumption for calculation of PDfield using (17) is that a field
level detection implies that the target is present in the 'correct' gateway neighborhood, and is
absent in all the others. It is assumed that the target appears in a gateway neighborhood, and is
stationary for the entire duration of the field-level epoch.

9



A field level false alarm occurs when the target is absent, but one or more gateways report
Tfield or more detections out of the nfg decisions sent to the fusion center. The probability of a
gateway falsely detecting a target is PFg*, since the target is absent. The only condition for a
false alarm to occur at the field level is that one or more gateways must satisfy Tfield, the field
threshold. A discussion of false alarms at the field level follows.
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IV. Specifiable Field-Level Probability of False Alarm

The false alarm performance of the sensor network (PF) at the field level can be specified,
and the design parameters can be derived in a top down manner to satisfy the same [3]. This
section presents an approach that may be used to achieve a specified PF at the field level.

False Alarms at the Field Level

A false alarm at the field level occurs when the fusion center declares that there is a
target when there is none. Let F be the event that a false alarm occurs at the fusion center. Then
let the event UCF =(FrnH 0 )denote the event of an unconditional false alarm. By
unconditional, we mean that it is the probability that the fusion center wrongly decides that the
target is present. From Bayes' Rule, unconditional probability can be calculated as

Pr(A n B} = Pr{AI B}. Pr(B}. (21)

In terms of our problem,

Pr(F nH 0 } = Pr(F I Ho). Pr(Ho}. (22)

The probability of the event that the fusion center has declared a target detection given that the
target is absent is the conditional probability of a false alarm, Pr{F I Ho). Pr{Ho }, is the prior
probability of the target being absent. The prior probability is the marginal probability,
interpreted as a description of what is known about a variable in the absence of some evidence or
data. It is an unconditional probability. For Bayes' rule to apply, Pr{Ho} • 0.

Expected Number of False Alarms (ENFA)

Expectation of a random variable is the average of all possible values of a random variable,
where a value is weighted according to the probability that it will appear. The expectation is
sometimes also called the average, and is also known as the expected value or mean of the
random variable. The expectation E[R], of a random variable, R, on sample space, S, is defined
as

E[R]= ZR(s). Pr{ s}. (23)
SES

Alternately,

E[R]= Er'Pr(R=r}. (24)
rE Range( R)

One technicality in both of the above definitions that can cause trouble if ignored is that the
order of the series is not specified. The limits of the above series are not well defined unless the
series are not absolutely convergent, i.e., the sum of the absolute values of the terms converges.
For absolutely convergent series, the order of summation does not matter; the series converge to
the same value.
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Like other averages, the expected value does not say anything about what will happen in a
single trial. For example, an average person in the US owns 1.3 cars. Obviously, none has
exactly that number. Therefore, we do not expect to see the expected value of a random variable
in one trial. However, over a large number of values, we do expect the values to average out
close to the expected value.

Expected Value of an Indicator Random Variable - False Alarm

For simplicity, we assume that the target is present or absent in each decision epoch
independent of the other epochs. Let IF, be 1 if the fusion center declares the target present in

epoch i, and 0 otherwise.

The expected value of an indicator random variable is the probability of that event. Let IFbe
the indicator random variable for the event of a false alarm. Thus, IF = 1 if and only if a false
alarm occurs, and is 0 otherwise.

E[ IF] = Pr(UCF } (25)
Proof:

E[IF]= 1.Pr(IF = 1]+O. Pr(IF = 0)

=Pr(IF = 1)

= Pr(UCF}

The number of false alarms per week is obtained by summing the false alarms over all of the
W time epochs

W
IF =zI (26)

i=1 F,

where W is the number of epochs, or decisions per week. Then the number of false alarms can be
expressed as

W
EfIF] =E[zIF]

=E[IF].
i=I

Using (24), the expected number of false alarms per week is

ENFA = E[IF] = W. Pr{UCF}. (27)
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Using (22),

ENFA = W -(PFfied .(0 9))

)ENFA"" PF•'d(0.9).W (8

Here, the prior probability of the target being absent is assumed to be 0.9 [3].

False alarms follow a binomial distribution [1]. The mean and standard deviation for the
binomial distribution are calculated as [4]

mean for a binomial distribution = np

standard deviation for a binomial distribution =

where n = number of trials, p = probability of success in one trial, and q = I-p. For an
experiment, the number of observations of a successful event may be divided by the total number
of observations to compute a proportion. For a binomially distributed proportion, confidence
intervals (CI) can be computed as described in [5], [6].

13



V. Methods

The approach in [1] described a two-tier sensor network (or gateway neighborhood) to
monitor an area using a large number of sensors randomly deployed over the region, and gave
probabilistic measures of performance in terms of detection and false alarm probabilities. Since
these performance measures apply for a gateway neighborhood, the work provided the necessary
building block to test the usefulness of repeated trials in hierarchical sensor networks that have
multiple gateways in an architecture having more than two tiers. This section describes the
methods used in the set up of a hierarchical sensor network using multiple non-overlapping
gateway areas to detect a randomly appearing target, and describes the procedures used to
demonstrate the use of repeated trials to attain the degrees of freedom needed to achieve a
desired level of performance using the hierarchical network.

For a three-tier network, simulations were used to demonstrate the process of selecting
thresholds and numbers of trials for repeated trials at different levels and to demonstrate the
validity of theoretical predictions for PD and PF at the gateway and field levels. Two levels of
repeated trials (Gateway, Improved Gateway) were performed at the gateway nodes and one
level of repeated trials (Field) was performed at the fusion center.

Gateway Area Setup

For the simulations, a field of 10,000 randomly placed sensors was organized into ten
gateways using the following parameters.

Number of sensors per gateway neighborhood: N= 1000
Number of gateway neighborhoods: ng = 10
Sensor parameters: a = 200, a = 100, n=2, T= 0.1, and Po= 1000
Gateway scan threshold: TG = 473

The gateway scan threshold (TG) was chosen from ROC data to get an exemplary level of
performance (Pf and Pd).

For T= 0.1, (4) was used to calculate pfa =0.4602 for the sensors. For TG = 473, (8) and
(11) were used to calculate Pf = 0.216970 and Pd = 0.821320 for the gateways. Simulations
(10,000 runs) were performed to validate the theoretical gateway performance results. The
gateway detection performance was simulated by making targets appear within the gateway and
observing a gateway-level detection if the number of sensors reporting a detection exceeded TG.
The gateway false alarm performance was simulated for no target in the gateway by observing a
gateway-level false alarm if the number of sensors reporting a detection exceeded TG. The
numbers of observed detections and false alarms were divided by the total number of simulation
runs to compute a proportion that was compared to the theoretical probability.

Desired Gateway and Field Performances

The gateway performance Pf = 0.216970 and Pd = 0.821320 achieved using a single scan of
the sensors in the gateway neighborhood was not adequate. Table 1 lists the performance
specifications chosen for this demonstration of repeated trials at the gateway and field levels.
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The specified field performance reflects a high detection probability (PDfeId > 0.95) and a low
false alarm probability (PFflead < 0.0005) that would allow an average of one false alarm in two
weeks if 1008 decisions were made per week, which corresponds to one decision every 10
minutes (ENFA=0.5, W=1008 in (28)). The following sections describe the computation of
probabilities that must be analyzed to select the thresholds and number of repeated trials needed
to attain the desired performance described in Table 1.

Table 1. Desired false alarm and detection probabilities for the gateway and field
Level PF PD

Gateway (after a first level of repeated trials) PFg < 0.025 PDg > 0.9
Improved Gateway (after a second level of repeated trials) PFg * < 0.00005 PDg* > 0.95

Field Pfield < 0.0005 PDfeld > 0.95

Repeated Trials at the Gateway Level

First Gateway Level of Repeated Trials. Simulations were used to demonstrate the process
of selecting the threshold and number of trials for the first level of repeated trials done at the
gateway. For Pj = 0.216970 and Pd = 0.821320, the probabilities (PDg and PFg) of getting
exactly a) k detections and false alarms out of n trials and b) k or more detections and false
alarms out of n trials were computed using (15) and (16) for different numbers of trials. These
probabilities were examined to allow the threshold, Tg, and number of repeated trials, n, to be
chosen to meet the specified PDg > 0.9 and PFg < 0.025 (Table 1). If more than one choice for
the threshold and number of repeated trials would allow the specified PDg and PFg to be met, the
lowest number of repeated trials was selected to reduce computational and communications
overhead. Simulations (10,000 runs) were performed to validate the theoretical gateway
performance results that would be achieved for the selected threshold and number of repeated
trials. The numbers of observed detections and false alarms were divided by the total number of
simulation runs to compute a proportion that was compared to the theoretical probability.

Second Gateway Level of Repeated Trials. Simulations were also used to demonstrate the
process of selecting the threshold and number of trials for a second level of repeated trials done
at the gateway level. Using the performances attained in the first level of repeated trials (the PDg
and PFg achieved using the selected threshold, Tg, and number of repeated trials, n) the
probabilities (PDg* and PFg*) of getting exactly a) k detections and false alarms out of n trials
and b) k or more detections and false alarms out of n trials were computed using (15) and (16)
(or (18)) for different numbers of trials. These probabilities were examined to allow a threshold,
Tg*, and number of repeated trials, n*, to be chosen to meet the specified PDg* > 0.95 and PFg*
< 0.00005 (Table 1). If more than one choice for the threshold and number of repeated trials
would allow the specified performances to be met, the lowest number of repeated trials was
selected to reduce computational and communications overhead. Simulations (10,000 runs) were
performed to validate the theoretical gateway performance results that would be achieved for the
selected threshold and number of repeated trials. The numbers of observed detections and false
alarms were divided by the total number of simulation runs to compute a proportion that was
compared to the theoretical probability.
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The Field Level

Gateway level detection decisions made using a threshold Tg in one level of n repeated trials
were fused to make field level detection decisions. Each of the ng gateways sent multiple (nfg)
decisions to the field level fusion center over a single time epoch. The nfg decisions were used to
make the field level detection decisions. Equations (17), (18), and (20) were used to compute
PDf,,id and PFfeaId using the probabilities of detection and false alarm for the identical gateways,

PDg and PFg, respectively, achieved using the threshold, Tg, and number of repeated trials, n,
through the first level of repeated trials at the gateway level. The threshold, Tfied, was chosen to
allow the expected number of false alarms (ENFA) specification to be met. The theoretical field
performance (PDfieId and PFfieId) was validated using detailed simulations. At each sensor, a noisy
signal, si, was generated and compared to the threshold, ', to make a detection decision.
Repeated trials were simulated at all the gateways in the field allow the observed field
performance to be calculated. A detection decision was made for a gateway if the gateway not
only met the threshold, Tfield, but also had the greatest number of detections among all the
gateways.
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VI. Results

Gateway Setup and Performance for a Single Trial

The gateway ROC curve shows the operating point (TG = 473, Pf = 0.2169, Pd= .8213)
when a single scan was used by the gateway to make a decision about the presence of the target
(Fig. 3). The Pd and Pf values calculated using (11) and (8) were within the 95% confidence
intervals for the proportions for detections and false alarms observed in simulations (Table 2).
Thus, the simulation results supported the theory.
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Fig. 3. Receiver Operating Characteristic (ROC) for the gateway, and the selected operating
point.

Table 2. Gateway level performance for a single scan, TG = 473, N= 1000
Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.8215 0.8139 0.8289 Pd = 0.8213
False alarm 0.2189 0.2109 0.2271 Pf-= 0.2169

Repeated Trials at the Gateway Level

First Gateway Level of Repeated Trials. A single gateway trial achieved Pd = 0.821320 and
Pf = 0.216970. Table 3 shows the theoretical probabilities for a first level of repeated trials
performed to demonstrate improved performance at the gateway for 2, 6, and 10 trials. Tables
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3(a) and 3(b) show the probabilities of getting exactly k false alarms and detections in n trials,
respectively. Tables 3(c) and 3(d) show the probabilities of getting k or more detections and false
alarms out of n trials. Thus, Tables 3(c) and 3(d) show the resulting probabilities (PFg and PDg)
attained for each choice of k and n, if the target is declared present only after receiving k or more
reports of the target being present. These tables show that the performance is enhanced by the
voting carried out through repeated trials. A review of the probabilities determined that a choice
of Tg = 4 for the threshold for n = 6 repeated trials attained PDg > 0.9 and PFg < 0.025 as
specified (Table 1). Thus, a target is declared present only after receiving Tg = 4 or more reports
of the target being present out of the n = 6 trials. The highlighted and underlined values in Table
3 show the resulting gateway performance, PDg = 0.9255 and PFg = 0.0227, achieved using Tg =
4 in 6 repeated trials. A higher PDg and lower PFg could be achieved by choosing 10 trials and a
threshold of 6. However, since more trials take longer to complete, involve more data fusion
operations, and require more communications, 4 was chosen as the threshold in 6 repeated trials.

Table 3. Theoretical performance at the gateway level through first level of repeated trials
Exact Probabilities (k out of n) of False Alarm, Exact Probabilities (k out of n) of Detection,

Pf= 0.216970 Pd= 0.821320
k n=2 n=6 N=10 n=2 n=6 n=10
1 0.339788 0.383215 0.240107 0.293507 0.000898 0.000002
2 0.047076 0.265463 0.299391 0.674567 0.010314 0.000032
3 0.098076 0.221222 0.063211 0.000387
4 0.020382 0.107273 0.217918 0.003110
5 0.002259 0.035669 0.400672 0.017153
6 0.000104 0.008236 0.306955 0.065705
7 0.001304 0.172582
8 0.000136 0.297484
9 0.000008 0.303870
10 0 0.139677

(a) (b)
Probability of>= k False Alarms, PF? Probability of>= k Detections, PD.

k n=2 n=6 N=10 n=2 n=6 n=10
1 0.386864 0.769500 0.913347 0.968073 0.999967 1
2 0.047076 0.386285 0.673240 0.674567 0.999070 0.999998
3 0.120822 0.373848 0.988756 0.999967
4 0.022745 0.152626 0.925545 0.999580
5 0.002363 0.045353 0.707627 0.996471
6 0.000104 0.009684 0.306955 0.979317
7 0.001448 0.913613
8 0.000144 0.741030
9 0.000009 0.443546
10 0 0.139677

(c) (d)

For 6 repeated trials, and thresholds of 4, 3, and 2, the values of PDg and PFg calculated
using (15) and (16) were within the 95% confidence intervals for the proportions for detections
and false alarms observed in simulations (Tables 4-7). Thus, these simulation results
demonstrated the validity of the theoretical detection probabilities. The only exception was for a
threshold of 1, where PDg = 0.99997 is above 0.9998, the upper bound for the 95% confidence
interval (Table 7). Several facts suggest that there is no reason to question the agreement of the
results with theory. First, out of about 20 comparisons to a 95% Cl made in this report, only PDg
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= 0.99997 is outside the CI; for a 95% CI, about one of twenty comparisons would be expected
to be outside the CI. In addition, the CI was computed for the proportions observed in 10,000
trials. An alternative approach was to compute the CI based on the proportion expected for the
theoretical probability; this alternative was not used for this report since a) the theoretical
probabilities were often so close to 1 or so close to zero that computing the CI based on the
expected proportions out of 10,000 trials would have required careful rounding, and b) the two
alternative methods for computing the CI were expected to yield similar results. However, it is
useful to apply the alternative approach for computing a CI for PDg = 0.99997. The proportion
(10,000 observations out of 10,000 trials) corresponding to PDg = 0.99997 is 1. For a proportion
of 1, the 95% CI (0.9995 to 1) contains the value 0.9996 observed in 10,000 simulation trials.
Thus, the two alternative methods for computing the CI gave different results. Even though there
is no reason to question the agreement of the results with theory, additional simulations could be
performed to give a more compete test for the theory.

Table 4. Gateway level performance for the first level of repeated trials.
(n=6 scans for a gateway, threshold (T,) = 4 out of 6 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9254 0.9201 0.9304 PDg = 0.9255
False alarm 0.0223 0.0196 0.0254 PF, = 0.02270

Table 5. Gateway level performance after repeated trials.
(n=6 scans for a gateway, threshold (T,) = 3 out of 6 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9891 0.9869 0.9910 PDg =0.9888
False alarm 0.1234 0.1171 0.1300 PF, = 0.1208

Table 6. Gateway level performance after repeated trials.
(n=6 scans for a gateway, threshold (T.) = 2 out of 6 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound
Detection 0.9994 0.9987 0.9997 PDg = 0.9991
False alarm 0.3848 0.3753 0.3944 PF, = 0.3862

Table 7. Gateway level performance after repeated trials.
(n=6 scans for a gateway, threshold (T.) = I out of 6 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9996 0.9990 0.9998 PDg = 0.99997
False alarm 0.7731 0.7648 0.7812 PF, = 0.76950

Second Gateway Level of Repeated Trials. A first level of repeated trials at the gateway
using a threshold Tg = 4 detections out of n = 6 repeated trials gave PFg = 0.022745 and PDg =
0.925545. Table 8 shows theoretical data for a second level of repeated trials performed to
demonstrate improved performance at the gateway. Probabilities of false alarm and detection
were calculated using different thresholds for 2, 4, and 6 repeated trials. Tables 8(a) and (b) show
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the probabilities of getting exactly k false alarms and detections in n trials. Tables 8(c) and (d)
show the resulting performance (PFg* and PDg*) with the choice of k. Thus, PFg * and PDg* are
the resulting probabilities if the target is declared present only after receiving k or more
detections out of the n trials. A review of the probabilities determined that a choice of Tg* = 3 for
the threshold for n* = 4 repeated trials attained PDg* > 0.95 and PFg* < 0.00005 as specified
(Table 1). Thus, a target is declared present only after receiving Tg* = 3 or more reports of the
target being present out of the n* = 4 trials. The highlighted and underlined values in Table 8
show the resulting gateway performance, PDg* = 0.969948 and PFg* = 0.000046, achieved using
Tg* = 3 in 4 repeated trials. A higher PDg* and lower PFg* could be achieved by choosing 6
trials and a threshold of 4. However, since fewer trials are more economical, 3 was chosen as the
threshold in 4 repeated trials.

Table 8. Theoretical performance at the gateway level through a second level of repeated trials
Exact Probabilities of False Alarm Exact Probabilities of Detection

Trials each trial = 6 scans each trial = 6 scans
PFt2 = 0.022745 PD2 = 0.925545

k n=2 n=4 n=6 n=2 n=4 n=6
1 0.044455 0.084912 0.121640 0.137823 0.001528 0.000013
2 0.000517 0.002964 0.007078 0.856634 0.028493 0.000395
3 0.000046 0.000220 0.236127 0.006545
4 0.000000 0.000004 0.733821 0.061020
5 0.000000 0.303412
6 0.000000 0.628616

(a) (b)
Trials Probability of>= k False Alarms, PF2 * Probability of>= k Detections, PD,)*

k n=2 n=4 n=6 n--2 n=4 n=6
1 0.044973 0.087923 0.128941 0.994456 0.999969 1.000000
2 0.000517 0.003011 0.007301 0.856634 0.998441 0.999987
3 0.000046 0.000224 0.969948 0.999592
4 0.000000 0.000004 0.733821 0.993047
5 0.000000 0.932028
6 0.000000 0.628616

(c) (d)

For 4 repeated trials, and thresholds of 3, 2, and 1, the values of PDg*and PFg* calculated
using (15) and (16) (or (18)) were within the 95% confidence intervals for the proportions for
detections and false alarms observed in simulations (Tables 9-11). Thus, the simulation results
demonstrated the validity of the theoretical detection probabilities.

Table 9. Gateway level performance validation
(n = 4 sets of 6 scans for a gateway; threshold (T,*) = 3 out of 4 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound
Detection 0.9700 0.9665 0.9732 PDg*=0.96995
"**False alarm 0.0000 0.0000 0.0004 PF *=0.00005

** Note: In the table above, the theoretical false alarm probability is 4.6x10 5 - 5x10 5 , which
implies 5 false alarms in 100,000 trials. Since the number of simulations performed was 10,000,
the number of trials did not allow comparison of the theoretical data with simulations.
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Table 10. Gateway level performance validation
(n = 4 sets of 6 scans for a gateway; threshold (T, *) = 2 out of 4 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9985 0.9975 0.9991 PDg*=0.9984
False alarm 0.0029 0.0020 0.0042 PF2 *=0.0030

Table 11. Gateway level performance validation
(n =4 sets of 6 scans for a gateway; threshold (T,*) = 1 out of 4 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 1.0000 0.9996 1.0000 PDg"=0.9999
False alarm 0.0860 0.0807 0.0917 PF,*=0.0879

Field Level Performance

Decisions made in a first level of repeated trials at the gateway using a threshold Tg = 4
detections out of n = 6 repeated trials gave PFg = 0.022745 and PDg = 0.925545. These gateway
level decisions were fused to make field level detection decisions. Tables 12 and 13 compare the
theoretical field level detection performance with the results of simulations for thresholds Tfield =
2 and Tfleld = 3 out of nfg = 4 trials. A choice of k = Tfield = 3 gave the underlined and bolded
PFfieId = 0.0004 and PDfield = 0.9699 which met the specified PDfeld > 0.95 and PFfield < 0.0005
(Table 1). The target was declared present only after receiving Tfield = 3 or more reports of the
target being present out of the nfg = 4 trials. Thus, the simulation results demonstrated the
validity of the theoretical detection probabilities.

Table 12. Field level performance
(n = 4 sets of 6 scans for a gateway; threshold (TLield) = 2 out of 4 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9975 0.9963 0.9984 PDfield =0.9983
False alarm 0.0281 0.0250 0.0316 PFfeId =0.0297

Table 13. Field level performance
(n = 4 sets of 6 scans for a gateway; threshold (Tfield) = 3 out of 4 trials)

Event Proportion in 10,000 Simulations 95% C.I. Theoretical Probability

Lower Bound Upper Bound

Detection 0.9723 0.9689 0.9753 PDfieId =0.9699
False alarm 0.0004 0.0002 0.0010 PFriId =0.0004
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VII. Discussion

Repeated trials improved detection performance in a hierarchical network, and provided the
degrees of freedom needed to attain a specified field performance using common sensors having
a relatively poor performance. With repeated trials, an impressive field performance of PFfiead =
0.0004 (about one false alarm in two weeks) and PDfletd = 0.9699 was achieved using low quality
common sensors having pfa =0.4602 and gateways for which Pf = 0.216970 and Pd = 0.821320
without repeated trials. More repeated trials could achieve an even better field performance using
the same common sensors.

However, the use of repeated trials requires additional detection decisions at the appropriate
hierarchical levels, and communication of the extra decisions. Additional decisions and
associated communications introduce delays. Future work should consider the performance
tradeoffs involved in choosing the common sensor performance, the number of repeated trials,
and the hierarchical level at which trials are repeated.

In addition, the routine use of a sensor network involves finite numbers of observations in
which the frequency of an event is a random variable having the theoretical event probability as
the expected value. For a theoretical single-trial gateway performance Pd = 0.8213 and Pf =
0.2169, the achieved PFfield = 0.0004 met the specified criterion PFfieId < 0.0005, as desired.
However, the upper bound for the 95% confidence interval for PFfaied was 0.001 (Table 13), a
number that was twice the value of the specified PFfieId. Although the specified performance was
achieved in this work for a simulation trial of 10,000 runs, corresponding to a period of about ten
weeks, the performance attained in additional simulation trials would sometimes be better and
sometimes be worse. Due to the inherent nature of the detection process, the performance
predicted is the average performance that can be expected from the system, therefore implying
that the short-term performance can sometimes be worse and sometimes be better.

The performance of the lower and middle tiers can also affect the overall performance of a
multi-tier system. For example, (17) and (20) show that PDfieId and PFfieId depend on Pd and Pf
for a single trial at the gateway level. If the actual gateway performance differs from the
theoretical probabilities Pd = 0.8213 and Pf = 0.2169, the PDfieId and PFfieId would differ from the
theoretical values.

Future work should consider the confidence intervals for the probabilities at all hierarchical
levels in outlining a conservative design methodology that guarantees a worst-case field
performance that meets the specification over an appropriate period of use. The approach
presented in this report could be used as a starting point; the design would* be carried out to
achieve a performance that exceeds the specification such that the worst-case performance
achieved would meet the specification. In addition, further work could include the development
of test cases for rigorous characterization of the system performance and validation of the theory.

VIII. Conclusions

The work in [1] described detection performance measures for two-tier sensor networks.
However, that approach does not provide the degrees of freedom necessary to obtain a desired
level of performance, and does not consider hierarchical sensor networks that have more than
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two layers. This report extended the work in [1] and [3] by making use of repeated trials to
provide the degrees of freedom needed to give improved performance using a distributed multi-
tier hierarchical sensor network. Probabilistic performance measures were developed and applied
for repeated trials in multi-tier hierarchical sensor networks. Repeated trials achieved an
impressive field performance in a hierarchical network using a large number of low quality
sensors.
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Abstract - Localizing a target using a maximum likelihood Some attributes unique to WSNs are sensor failures, large

framework involves optimization of a complex multimodal scale of deployment, harsh ambient conditions, and small-scale sensor nodes. Owing to the limited battery life
function. Deterministic search algorithms are ineffective typically available to sensor nodes, minimizing the demand

because they can converge to local minima, resulting in p laced on se u on banymciity ivtal.

large errors. Stochastic algorithms provide global placed on resource utilization by any activity is vital.

solutions with higher accuracy, but can be computationally Hence, a lot of research in WSNs principally focuses on

burdensome, and can require tuning of parameters. This designing energy aware algorithms and protocols.

paper presents a novel two-step technique that allows Target localization is an important application ofpapr pesets noel woste tehniue hatallws WSNs. Various ways to tackle this problem have been
accurate localization of the target without a high yrpse io the terackle this pro ave been
computational burden. First, a weighted average of theusingcomputational burdetectin. First, a w ted aermage. ofThe binary sensor data, for which the maximum likelihood (ML)
positions of detecting sensors forms a coarse estimate. The estimator and its Cramer-Rao lower bound (CRLB) were
coarse estimate is used as the initial estimate for a Nelder- derived [2]. In this approach, each sensor makes a decision
Mead direct search. This two-step process reduces the about a target's presence by comparing the intensity of a
global search to a local search, avoiding pitfalls due to measured signal to a threshold. The sensor communicates aconvergence to local minima. For an exemplary sensor one-bit decision to the fusion center. On receiving such

network, the deterministic direct search often fails by oebtdcso otefso etr nrciigsc
nrminimm d het startg poitn t aisy binary information from all the sensors, and using a prioriconverging to a local minimum if the starting point Us information about the positions of the sensors, the fusionchosen at random. In contrast, the two-step algorithm center localizes the target through the non-linear

accurately localizes the target with a low computational optimization of a highly complex multimodal function. The
overhead. approach has recently been extended for localization based

Keywords: Localization, maximum likelihood estimation, on quantized data [3]. These methods are attractive becausesensor networks, weighted averagex they offer the promise of accurate target localization and
require that only quantized data be transmitted, which

results in savings in communication bandwidth. However,
optimization of a complex multimodal function is

1 Introduction challenging. Deterministic search algorithms are ineffective
because they can converge to local minima, resulting in

Recent advances in sensing and wireless large localization errors. Stochastic algorithms provide
communications technology along with an ever expanding global solutions, but can be computationally burdensome,
set of potential application areas continue to fuel the flurry and can require tuning of parameters.
of interest in wireless sensor networks (WSN) [1]. A WSN Some examples of deterministic optimization
is a collection of spatially distributed sensing devices that algorithms are gradient-based algorithms that rely on the
function cooperatively to garner information about an knowledge of the first partial derivatives of the objective
environment or event of interest. Their ability to function, and quasi-Newton Raphson (QNR) strategies that
autonomously perform tasks such as data gathering, operate on approximations of the second partial derivatives
communication, co-ordination, and control makes WSNs a of the objective function. Deterministic strategies have the
prudent deployment alternative for environments with drawback of not being able to cope with multidimensional
limited accessibility. objective functions having multiple local minima or

Applications of sensor networks include expansive flat surfaces, and can only converge to a
environmental and habitat monitoring, seismic detection, minimum local to the starting point of the search. In contrast
emergency medical response, traffic surveillance, building to traditional numerical techniques, stochastic global
and structure monitoring, target localization and tracking. optimization algorithms like genetic algorithms (GAs) and



particle swarm optimization (PSO) algorithms can be used 2.1 Sensor detection model
to avoid traps due to local minima. For example, GAs do
not require the evaluation of gradients, and do not pose The sensor detection model assumes that signal
differentiability or continuity requirements on the objective intensity attenuates as the distance from the target to a
function. GAs iteratively refine a single solution vector as sensor increases
they search for minima, and operate on entire populations of
candidate solutions in parallel. This parallel nature is the a, =
inherent forte of GAs that makes them much less likely to k+ ad,"

get trapped in local minima, and also less sensitive to initial where di is the distance from the target to the ith sensor, a,
conditions. Nevertheless, GAs suffer from slow is the signal amplitude at the ith sensor, P0 is the signal
convergence rates because a lot of time is expended in power received at the ith sensor, a is a constant, and n is
testing the fitness of suboptimal solutions. Moreover, GAs, the decay exponent. Values of parameters used in this paper
due to their stochastic nature, can only estimate the global are n = 2, a= 2, and P0 = 64. The distance of the target
minimum whereas traditional deterministic algorithms can from the ith sensor is given by
find it exactly. GAs and other stochastic optimization
schemes suffer from slow convergence rates, high d, =V(x-x,) +(,y -y, (2)
computational costs and poor accuracy of final solution
since they perform a random search of the solution space. A where (xi, yi) are the coordinates of the ith sensor and the
hybrid optimization scheme that combines both stochastic target location is given by (x,, ye). The signal ai is corrupted
and deterministic schemes to achieve high convergence by standard Gaussian noise w. that is independent across
rates and avoid local traps has been shown to achieve high sensor i and time framej
estimation accuracy at a high computational cost [4].

s. =a, +%. (3)
In contrast to stochastic algorithms, a deterministic

algorithm used in concert with a good initial guess close to For a given timeframe j, sensor i makes a binary decision
the global minimum is expected to yield a significantly about the presence of the target by comparing the noise
higher accuracy of the final solution with less computation. corrupted signal su to a common preset threshold rio = qj
This paper presents a simple, yet effective two-step -
approach that can be used to localize a target more J-- (4)

accurately and with a low computational burden. The steps

involved in this approach are The threshold has a significant effect on the coarse
1) Form an initial coarse estimate of the target position estimate of the target position. If the threshold is low, a high

using a heuristic weighted averaging (WA) technique, number of sensors detect the target and the accuracy of the
2) Use the coarse estimate as the initial estimate for a estimate is poor. On the other hand, for a high threshold,

deterministic Nelder-Mead search to find the global there may be no detections at all. Allowing the threshold to
minimum. vary with the timeframe as in (4) provides a wide range of

thresholds, making it likely that the target position can be
This paper compares the results of the two-step estimated accurately.

approach with those obtained with WA alone and with a
one-step deterministic Nelder-Mead search using a random After collecting the decisions Iy from all N sensors for
guess as the initial value. The paper is organized as follows, all T timeframes, the higher-level node can estimate the
Section 2 describes the ML target localization framework. parameter vector including the target position 0 = [x, y,] by
The WA method is outlined in section 3. The methods used maximizing the log-likelihood function (5) with respect to 0
to compare the localization performance of one and two- (Fig. 1).
step approaches and WA are described in section 4. The
results and discussion are presented in section 5 followed In p(I1)= rJI ln[(q -i(O))]+
by the conclusion in section 6. ,=1 j=

l-l4 )lnL[(1-Q. - a,(9)))] (5)

2 Maximum likelihood target

localization The Q (-) function is the complementary distribution of the
standard Gaussian distribution function defined by

The maximum likelihood (ML) estimation framework I _f
for target localization using binary data presented in [2] is .x) e 2 dl. (6)
utilized in this paper and reviewed in this section. x q27"
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Fig 1. Plot of the log-likelihood function (target placed at - -
.• I i I i I

x,=y1 =2.5, N=49, P,=64, n=2, a-2).

The ML estimate 0 corresponds to the global maximum of -3 -2 -1 0 1 2 3
the log-likelihood function (5) X

Figure 2. Layout of the sensor network with circles showing

9= max In p(I 1). (7) sensor positions. A target at (0.5, 0.5) is shown as an asterisk.
a

2.2 The Cramer-Rao lower bound 3 Weighted average estimation
Using the WA technique, the first step is to computeSince the ML estimator is an asymptotically unbiased the mean of the positions of all the sensors detecting the

unbiased ML estimate is given by target in each timeframe. Let the estimated target position
in timeframej be denoted as (xj, y 1j). An overall estimate

E{[P(I)-]9[6(I)- 0] } > -J (8) of the target position, denoted by (it, 5 ,), is then
computed by performing a weighted average (WA) of the

where J is the Fisher Information Matrix. Details of the estimates from all the timeframes
Fisher Information Matrix are given in [2]. The covariances
of the errors in the target's x and y position estimates are T T

bounded by the (1,1) and (2,2) elements of the J'- matrix, Ew -xj Ew,.
respectively. j, l= (10)

var( 1 )= var(i,) > Jj Zw. Ew,
j=1 j=1

var(9 2)=var(ý,)>J 2,-' (9) where wi is the weight for timeframe j. The local sensor

threshold jj is varied as in (4). At a low threshold, a sensor
2.3 Network Layout can detect a target farther away than at a higher threshold,

Consider a network having N=49 sensors as shown in but the probability of false alarm is higher in the earlier
Fig. 2. The sensors are uniformly placed on a grid of unit case. Since the number of sensors reporting the same targetwidth e is greater at a lower threshold than at a higher threshold, the

weight per time frame estimate needs to vary as a function
of the threshold. For the purpose of our simulations, the
weights for each timeframe are chosen to be equal to the
square of the signal power level required to produce a
detection.

w, = (11)



4 Comparison of the one and two-step WA used alone (Figs. 3 and 4), and were close to the

CRLB. The agreement of these results with the results in

approaches [2] validates the methods used in the present paper. Since

Extensive Monte Carlo simulations were run to the one-step approach often converged to local minima,

compare the quality of the ML estimates obtained using the RMS errors in the estimated target position were too high to

one-step and two-step approaches. The field was set up as be shown on the same scale as the results of WA and the

shown in Fig. 2, with 49 sensors laid on a uniform grid. In two-step approach in Figs. 3 and 4.

the one-step approach, the target position was estimated by 0.4

minimizing the negative of the log-likelihood function, with
the starting guess for 0 chosen at random. The first step in
the two-step approach was to compute a WA estimate of the 0.35

target position, and the second step was to minimize the
negative of the log-likelihood function using the WA 0. -
estimate as the starting point. The algorithm used for ,r
minimizing the negative of the log-likelihood function in --miii zn0.25 - -------- ------------------------

both the one-step and two-step approaches was a Nelder-
Mead unconstrained minimization algorithm. The CRLB -
for the RMS error was computed using (9) for each 0.2-

timeframe at each target location. The noise in (3) was zero
mean, and had unit variance (i.i.d. across all sensors and 0.15--------- ---------------------------
timeframes).

0 .1 - - - - - - - - - - - - - -

First, extensive Monte Carlo simulations were run for
five through ten timeframes for a target position ofx, = y, =
0.5, in order to facilitate comparisons with the data in [2]. 0.0-1 2 4 5 6 7 8 1

Next, Monte Carlo simulations were run for ten timeframes Total number of timetrames (T)

to compare the one and two-step approaches, where x, and Fig. 3. Root mean square (RMS) errors in estimated x, in 100
y, in each simulation were uniformly random, and were Monte Carlo runs for WA (triangles) and the two-step approach

between -3 and +3. Corresponding to the square root of the (squares) along with the CRLB (diamonds). Sensor network

normalized estimation error squared (NEES), the layout is shown in Fig. 2. (x,=y,=0.5, N=49, P,=64, n=2, a=2).

normalized RMS error (nRMSE) was computed by scaling 0.4

the estimation error at each target location by the CRLB for
the RMS error [5]. Finally, Monte Carlo simulations were
run with for ten timeframes to allow the two approaches to 0.35

be compared for another target position, x, = y, -1.5.
0.3- - ------------------------------------

5 Results and discussion
Tables I through III show data for representative sets 0

of simulations. For the target position of x, = y, = 0.5, the r
one-step approach often failed by converging to a local 0.2

minimum (Table I).

TABLE ]
RELATIVE PERFORMANCE OF THE ONE AND TwO-STEP APPROACHES IN 100

MONTE CARLO SIMULATIONS FOR A TARGET POSITION (0.5, 0.5) 0.1

Number of Number ofTotalNumbe of) Failures of One- Failures of Two- -.0_ _
Timeframes (T) Step Approach Step Approach 1 2 3 4 5 6 7 8 9 10

Total number of timeframes (T)5 11 0

6 2 0 Fig. 4. Root mean square (RMS) errors in the estimated y, in 100
7 8 0 Monte Carlo runs for WA (triangles) and the two-step approach
8 7 0 (squares) along with the CRLB (diamonds). Sensor network
9 11 0 layout is shown in Fig. 2. (x,=y, =0.5, N=49, Po=64, n=2, a-=2).
10 7 0

With the two-step approach, RMS errors in the
estimated target position were less than those achieved with



With the target position varied randomly throughout
the field (x, and Yt were uniformly distributed between -3 4

and +3), the one-step approach often converged to local
minima (Table II), resulting in large RMS errors in the 3

estimated target position. +

2-
TABLE I1

RELATIVE PERFORMANCE OF THE ONE AND Two-STEP APPROACHES IN 500 1
MONTE CARLO SIMULATIONS FOR RANDOM TARGET PosmoNs wIHIN THE

FRELD

Number of Number of

Totalumber of) Failures of One- Failures of Two-
Tireframes (T) Step Approach Step Approach -1

10 56 0

The average nRMSE for the two-step approach over -3-

500 runs was near unity, indicating that the RMS error in
the position estimates was near the CRLB for the target -4

positions. Convergence of the deterministic algorithm used
in the second stage of the two-step approach was achieved 33 :2 -'l 2 3 4 5
within an average of about 80 fuinction evaluations. The x
twithinpn avroaghperfof md a boute0 nctin evAlutios. Te Fig. 6. Actual target position (square) and estimated target
two-step approach performed better than WA (Fig. 5). positions (plus signs) using the one-step approach for 100 Monte

Carlo runs. (x, =y, = -1.5, NM49, P.=64, n=2, a=2, T=I 0). The
i, 14 _ellipse around the actual target position shows a 99%/0 confidence

M14n, region based on the CRLB.
i 12 nRMSE in est. yt The WA scheme (Fig. 7) gave estimates near the

0 4target location but its performance did not approach the
8_ _ _ _CRLB.

U)
-61

IENN n

00O

One-step WA Two-step -1.3-

approach approach -14

Fig. 5. Mean of the nRMSE for the one-step, WA and two-step > -
approaches over 500 runs. Target position coordinates x, andy,

were randomly varied between -3 and +3 according to a uniform -1.
distribution. (N=49, P,=64, n=2, a--2, T=10).

-1.7

Fig. 6 shows the results of location estimation using
the one-step approach with the target placed at x,=yv=-l.5. -1.8
The ellipse represents a 99% confidence region of the
position estimates based on the CRLB. About 15 of the 100 -1.9

estimated positions lie outside of the 99% confidence
interval. The one-step approach gave good performance 22 -1'.9 -. '8 -1'.7 -1'.6 -1.5 -1'.4 -1'.3 -1'.2 -1.1 -1

when it did not converge to local minima. x
Fig. 7. Actual target position (square) and estimated target

positions (plus signs) using the WA approach for 100 Monte
Carlo runs. (x,=y, =-1.5, N=49, P.=64, n=2, ao=2, T=10). The
ellipse shows a theoretical 99% confidence region based on the

CRLB.



Using the WA estimate as a starting point for the The ML surface of Fig. 1 is smooth near the target
Nelder-Mead search, the two-step approach performed location. The results of this study confirm that the coarse
well, with 99 of 100 estimated positions falling within the WA estimate provided in the first stage provides an initial
99% confidence interval (Fig. 8). estimate that is near enough to the function's global

maximum to facilitate convergence of the deterministic
algorithm used in the second stage of the two-stage
approach.

6 Conclusion
-1.2

In this paper, a simple two-stage approach for ML
-1.3 target localization using binary sensor data was presented.

This approach may be a step towards facilitating the routine
use of the promising ML target localization methods
described in [2] and [3] in which the use of quantized sensor
data reduces the needed communication bandwidth. In our
simulations, a deterministic search with a random starting
point frequently failed by converging to a local minimum of

-1.7 the multimodal ML surface of this problem. Simulation
results show that the two-stage approach is accurate and

-1.8 would require far fewer computations than alternatives such
as stochastic algorithms.

-1.9

A weight for each timeframe equal to the square of the
-2 -1.9 -1.8 -1'.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 signal power level required to produce a detection (11)x

Fig. 8. Actual target position (square) and estimated target proved to be adequate for the WA step in the two-step
positions (plus signs) using the two-step approach for 100 Monte approach. However, with this weighting scheme, the
Carlo runs. (x, = y,= -1.5, N=49, Po=64, n=2, a'=2, T=10). The performance of the WA estimate varies to some extent with
ellipse shows a theoretical 99% confidence region based on the the target location. Other weights might yield improved

CRLB. performance.

For both the fixed and random target position, the The problem of estimating a target location with a
two-step approach gave unbiased estimates of the target priori knowledge of the power of the target, P0 (1), was
position with the mean estimation error within the 99% addressed in this paper. The ML localization problem is
confidence interval (Tables III and IV). more complex in situations where P0 is unknown. Extension

of the two-stage approach for ML localization in cases
TABLE III where P0 is unknown will be considered in future work.

MEAN ESTIMATION ERROR AND CONFIDENCE INTERVAL FOR THE MEAN
FOR THE Two-STEP APPROACH (FOR FIXED TARGET POSITION OF (-1.5, -

1.5) AND 100 MONTE CARLO RuNs) 7 Acknowledgment
Mean 99% C.I. for Mean Mean 99% C.I. for Mean
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Abstract - Management of power and other resources that complex system. Agents are gaining popularity because of
effect field life is an important consideration in sensor their flexibility, modularity, and general applicability, espe-
networks. This paper presents and compares alternative cially in the field of distributed computing [2].
agent paradigms applicable for resource management. A Agents have much to offer in sensor networks. Agents
modular simulation framework based on object-oriented can be added, removed, and modified to offer great flexibil-
design was used to generate data for detailed analysis of ity in the design of distributed systems. Higher fault-
component interactions and for evaluation of the inte- tolerance and better load balancing can be achieved by
grated sensor network system. Monte Carlo simulations using multiple agents. Applications of agents in sensor
were used to compare the number of computations, num- networks include target tracking, wild fire monitoring,
ber of communications, tracking performance, intelligence traffic management systems etc. [3-5]. However, since this
quotient, and field life for scenarios utilizing different is an emerging field, the literature offering guiding princi-
agent paradigms. These comparisons will assist designers pies or strategies for utilizing agents in sensor networks is
of agent-based systems in utilizing agents to their best sparse.
advantages in scenarios similar to the wide range of those The objective of this work is to present and compare
explored in this paper. different agent-based paradigms developed to achieve the

goal of managing resources and increasing field life in the
Keywords: Sensor Networks, Agents, Resource Manage- undersea distributed sensor network. Simulations were used

to evaluate the performance of the different paradigms. This

1 Introduction comparison provides an increased understanding of how the
performance of the network changes with the number, func-

Sensor networks consist of many spatially distributed tionality, and presence of agents at different levels in the
sensor nodes that can be used to detect and monitor phe- network hierarchy. Field life, number of computations,
nomena at different locations. Applications of sensor net- number of communications, tracking performance, and a
works include environmental monitoring, health and hospi- measure of intelligence (IQ) are network specific perform-
tal related applications, infrastructure security, surveillance, ance measures used to compare the different paradigms.
and tracking. This paper considers an application of dis- Agents have been used for resource management and
tributed sensor networks in which a large number of sensor improving field life in sensor networks. However, we are
nodes are placed on the ocean floor near the mouth of a unaware of other work that compares paradigms based on
port or bay. The network is used for target detection and the number of agents, agent functionality, presence of
tracking. agents at different levels in the network hierarchy, and the

Individual sensor nodes have limited computational intelligence quotient of the system. Even though a particu-
capacity and battery power. A node's batteries may be de- lar undersea application is considered in this paper, many of
pleted through normal operation, leaving the node useless the results from this research can be applied to any agent-
and possibly weakening the network. With reduced re- based sensor network system.
sources, the network may no longer be able to deliver the This paper is organized as follows. Section II de-
required level of performance. Thus, field life is an impor- scribes the agent architecture and alternative agent para-
tant consideration in designing sensor networks [1]. digms that are compared in this paper. The alternative

Agent-based systems are a new and robust paradigm agent-based sensor network simulation scenarios are pre-
for designing flexible architectures for systems with dispa- sented in section III. The simulation framework is presented
rate needs. An agent is an entity that acts in the place of in section IV and the performance metrics used to compare
another, with its authority, in order to bring about a desired the different paradigms are described in section V. The
result. Agents are capable of carrying out goals alone or results are discussed in section VI followed by the conclu-
they can work together as a part of a larger community. sion in section VII.
Agents provide a level of abstraction for achieving goals in
a system, thereby potentially simplifying the design of a



2 Agent-based sensor network system
Fig. 1 shows the field layout of an exemplary sensor

network that detects and tracks a target through the field. A
grid layout is assumed although other field layouts could
also be easily implemented. The network has four master
nodes (large circles), nine cluster nodes (black dots) and
seventeen sensor nodes (small circles) per cluster. Only one
master node is active in the network at any time. The sensor Ae
nodes report measured range and bearing of the target to AgetClustr Node
cluster nodes that perform local data fusion. The active
master node (diamond) then gathers the data from the
cluster nodes, performs global data fusion, generates an c ;C c
estimate of the target position, and tracks the target through
the field. The active master node may also provide s s S, s Is s
information about the target and the network to an external
command center. When one master node fails, it may be 100-500m
replaced by one of the redundant master nodes that is +-_ 1-5 km N Sensor Nodes

activated to carry out the master node functions. Fig. 2. Sensor network architecture with agents on the
30 0cluster nodes and the master node.30 0 0 ', 0o,0 0 0

0 00 0 0 0 00 0 2.1 Paradigms based on numbers of agents
0 0 * 0 0,0 0 o 0 oo 0 0 0 0 Depending on the number of stationary agents in the

0 0 0 0 0 o 0 0 0 system, two strategies can be implemented in a distributed
12 0 0 0 0 o0 0 0 0 0o sensor network system. These two strategies having agents
1 o 0 0 0:,0 0 o o 0 0 are reviewed below.

0 000 0 00 00 0

0 o * 0 0 0 0 0oo 0 0 0 0 o * o o 2.1.1 Single stationary agent system: In this
00u 0 0 I scheme, a single agent located on the master node is respon-

z sible for data fusion, target tracking, and control and01 00 0 0o 0o
-o10 o - - - - - o----- --- -- - coordination. Centralized single agent systems are easy to

0 0 0 0 0 0 design but possess the disadvantages of centralized systems,
0 0 0 0 0 0 0 0 0 including poor survivability.

0 0 S 0 (* 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0 0 2.1.2 Multiple stationary agent system: In multi-

o 0 0 0o 0 0 0o ple agent systems, individual goals may be the same or
0 1 2 different for the agents, but the agents work together to

X 10STC 2s 3 achieve the global goals for the system. In a multi-agent
system, there may or may not be direct interaction between

Fig. 1. Field layout of the sensor network. agents. For a multi-agent system in which the agents interact
with each other, the system design becomes complex. In a

In a simple agent architecture, the agent forms a wrap- multi-agent system, agents may be located on the master
per around the node and perceives the environment from node and on the cluster nodes. In this work, the master
data collected by the sensors, messages from other agents, agents are responsible for global data fusion and tracking
or events that occur within the node. Depending on the goal and for control and coordination of the clusters. The cluster
that has been set for the agent, the agent applies some con- agents are responsible for local data fusion and for control
dition - action rules. These rules help the agent to make a and coordination of the local sensors.
decision on what action has to be taken in order to achieve
the goal. Fig. 2 shows the hierarchy of the sensor network 2.2 Paradigms based on agent functionalities
architecture in which master agents (MA) are present on the Different algorithms may be employed by the agents
master node and cluster agents (CA) are present on the for data fusion, tracking, control, and coordination. The
cluster nodes. For the undersea distributed sensor network agents have the ability to intelligently decide which
application under consideration, agents will be used for algorithms to use and when to use them in order to achieve
target tracking, control, coordination, and reconfiguration of the goal set for the agent. Some of these algorithms
the system and its resources in order to maximize the field developed in previous work are briefly reviewed below.
life.



2.2.1 Agents for data fusion and tracking: A determined within the agent using a fuzzy logic algorithm.
Kalman filter tracking algorithm for a distributed sensor The fuzzy rules are developed such that the periodicity
network system [6] has been adapted to serve in this appli- depends on the velocity of the target and the battery life

cation and was encapsulated in the agent-based systems to remaining on the master node. For a master node having full

achieve the goals of data fusion and target tracking. Agents or almost full battery reserve, the tracking is done less fre-
provide intelligence by deciding when to track, which track- quently (every 30-35 minutes) when a target is moving
ing algorithms to use, and how frequently to run these track- slowly through the field (0-10 knots/hr) than when the target
ing algorithms. If there are communication delays in the is moving fast (Fig. 3). Also, tracking is performed less
network, agents can also decide whether to skip the delayed frequently as the battery level of the master node decreases.
and old data or use the delayed data to generate a new target
track. If there is a slow moving target, then the agents can
run the tracking algorithms infrequently and save node 50-- - -

power. Some tracking algorithms may have better resolution
but may be more computationally intensive. Thus, the 40 . -- -
agents can use tracking algorithms efficiently to increase the
field life of the system while maintaining the required track- 30-

ing performance.
R 20-----

2.2.2 Agents for control and coordination: Intel- a.

ligent agents can be used to implement control and coordi- 10- ,
nation strategies in order to maximize the useful life of the
field. Agents for control and coordination can gather in- 0 .
formation about the battery life of the nodes in the network 0

and modify communication routes through the network. % BTE0 RM

Changing communication routes can help to decrease com- BATTERY REMAINING 100 40 TARGET VELOCITY

munication delays in the system as well as to manage the
power consumption of the nodes that are being used for Fig. 3. Surface plot for the timed tracking (TT) fuzzy logic

communication [7]. If a node dies in the system, agents can algorithm.

switch functions from the dead node to nodes that still have 3.3 Scenario 3
adequate battery energy remaining [1]. Agents can also be
used to selectively turn on and off nodes in the system. In scenario 3, only one master node is present in the
Thus, sensor nodes that are not in the vicinity of the de- system and no master agents are present. Cluster agents are
tected target can be temporarily switched off to save battery present on each cluster. The cluster agents perform data

energy. fusion and track using TT. The periodicity of fusion is
determined as for scenario 2, but in this case TT is run only

3 Scenario simulations at the cluster level in the system hierarchy.

Agent-based paradigms developed using multiple 3.4 Scenario 4
agents, different agent functionalities, and agents at differ-
ent levels in the system hierarchy are described below. In this scenario, four master nodes and four master

Only the most significant scenarios considered are pre- agents are present in the system but only one master node

sented in this paper. and agent is active at a time. Master agents use TT for
periodic tracking. When the battery of the current master

3.1 Scenario 1 node is about to die, the master agent at that node transfers
the control to a master node in the nearest proximity to the

No agents are employed in scenario 1. Master, cluster, target using a scheme referred to as Control and Coordina-
and sensor nodes operate continuously. tion scheme I (CC I).

3.2 Scenario 2 3.5 Scenario 5

One master node and one master agent are used in Four master nodes and four master agents are used in
scenario 2. The master agent runs the computationally in- scenario 5 but only one master node and agent is active at a
tensive data fusion and tracking algorithms periodically in a time. The master agents use CCI and a covariance tracking
mode referred to as Timed Tracking (TT). In TT, the meas- mode (CT). In CT, the master agent running the Kalman
urements from the sensors are used periodically to estimate filter tracking and fusion algorithm compares the target
the target position. In between successive measurements, position estimate covariance to a threshold. If the covari-
the tracking algorithm does a time update on the estimate to ance is below the threshold, the master agent stops the data
predict the target position. The battery energy of the master fusion process until the covariance increases above the
node is conserved using TT. The tracking periodicity is threshold. The master agent forces the tracking algorithm to



perform a time update on its estimates until the covariance restricted by this application but can be easily adapted for
of the estimate goes above the threshold. The threshold simulating agent-based sensor networks for other applica-
covariance level is adjusted to attain a desired tracking tions.
performance. For a tracking performance having a low root Fig. 4 shows the object diagram for the simulation
mean square (RMS) error, the threshold covariance level framework. Agents are present on the master and the cluster
will be smaller than that set to obtain a larger RMS error. In nodes. The communication model represents the communi-
this scenario the master agent also has the ability to instruct cation between nodes. A simple outbox-inbox communica-
the cluster agents to turn the cluster nodes on or off. Only tion scheme transfers the data between the nodes. The data
clusters adjacent to the cluster where the target is estimated is transferred from the outbox of the transmitting node to
to be present are turned on by the master agent using a the inbox of the receiving node. A localized optimization
scheme referred to as Control and Coordination scheme 2 scheme is used to route the data through the network [7].
(CC2). In addition, cluster agents on each cluster node Localized optimization uses the fact that cluster nodes can
perform control and coordination. When the master agent acquire the residual energy levels of sensor nodes using
instructs the clusters to turn on or off, the cluster agents use minimal communication within the cluster. This information
Control and Coordination scheme 3 (CC3) to instruct the is used by the cluster for localized network reconfiguration.
sensors to turn on or off in order to minimize the battery The communication model is also responsible for introduc-
power consumption at the different nodes in the system. ing communication delays in the system due to computa-

tional and communicational loads.
3.6 Scenario 6

Four master nodes and four master agents are used in Master Cluster

time. Cluster agents are present on all cluster nodes. The Model ++-

master agents use the proximity to the target-switching
scheme (CCI) to switch between master nodes. The master
agent turns off clusters that are far away from the target
(CC2). Cluster agents use CT for tracking and CC3 to turn Sensor
the sensors within each cluster on and off. Node

Table 1 summarizes the number of master and cluster
nodes, number of master agents (nma), number of cluster
agents (nca), and algorithms employed by the agents in
different scenarios. Fig. 4. Object diagram of the simulation framework.

TABLE 1 5 Performance metrics
Scenario descriptions

SCENARIO The performance of each agent-based paradigm was
1 2 3 4 5 6 evaluated using 30 trials of Monte Carlo simulations. For

Master nodes I 1 1 4 4 4 each trial the target was set up with random initial position
Cluster nodes 9 9 9 9 9 9 and velocity. The following network specific performance

nma 0 1 0 4 4 4 measures were used to compare the different paradigms.
nca 0 0 9 0 9 9

MA mode 5.1 LifeTT X X
CT X The field life of the network was defined to be theCCI X X X

CC2 x x simulation duration before the battery charge of any sensor,
CA mode cluster, or master node is depleted. In scenarios having

TT X multiple master nodes, the battery charge must be depleted
CT X at all master nodes in order for the simulation to end due to
CC3 X X loss of the master node function.

4 Simulation setup 5.2 Number of computations
A framework for simulating agent-based scenarios was Data fusion, tracking, control, and coordination algo-

developed to utilize the advantages of object-oriented pro- rithms are computationally intensive. A counter accumulates
gramming techniques. This framework allows the sensor the number of computations performed at each node at
network to be scaled easily. Nodes can be added or re- e tmove, dffernt ommnicaionand attry odel ca be every time step. Proportionate weights are assigned to the
moved, different communication and battery models can be computational elements and the node batteries are drainedsimulated, and different algorithms can be easily employed accordingly.
within the agents to facilitate simulation of a large number
of scenarios in a short period of time. This framework is not



5.3 Number of communications MIQ(ca)is the MIQ contributed by cluster agent ca
nima is the number of master agents, and

Communications utilize battery resources. Information nca is the number of cluster agents.
flows from the sensors to the cluster nodes and then to the
master node. The control signals flow from the master node The MIQ contributed by an agent is calculated using
to the cluster nodes and then to the sensors. A counter ac-
cumulates the number of communications taking place in n
the network. Proportionate weights are assigned to the com- M/Q = I ! (2)

munication tasks and the node batteries are drained accord-

ingly. where n is the number of tasks performed by each agent

5.4 Tracking performance (n=8) and r is the intelligence cost required to perform atask. The task intelligence costs, r1, for each task performed

For each Monte Carlo run, the error between the actual are presented in Table 2. The task intelligence costs were
target position and the estimated target position is calcu- assigned by analyzing the algorithms employed by the
lated. The mean of the root mean square (RMS) errors over agents and the decisions that were made.
30 Monte Carlo simulation runs is used to reflect the track-
ing performance of the system. This tracking performance TABLE 2

measure allows tradeoffs between field life for the network Task intelligence costs
and tracking performance to be examined. Task Task No MA MA MA MA CA CA CA

No Agent Tr CT CCI CC2 TT CT CC3

i BSI ri ri ri ri ri ri ri
5.5 Machine intelligence quotient Detect I 5 3 5 2 5 10 10 12

Observe 2 3 2 2 2 7 2 2 7

Many different agent scenarios can be envisioned for Identify 3 7 2 2 2 8 2 2 8

sensor networks and other applications. However, there are Interpret 4 10 5 8 3 8 12 15 8

no guidelines for assessing the performance benefits that Evaluate 5 0 10 12 6 6 10 12 6

would be derived from more complex realizations. Consid- Define 6 0 5 5 5 5 5 5 5

ering the different agent-based nodes as intelligent ma- Select 7 0 5 5 5 5 5 5 5
Execute 8 0 10 t0 15 18 10 10 18

chines, a measure of the machine intelligence quotient Sum= 25 42 49 40 62 56 61 69

(MIQ) was developed to facilitate comparing agent alterna-
tives of different complexities [8]. The MIQ gives a theo- For the scenarios explored in this paper, the intelligence
retical measure for quantifying the benefits of the decisions required by the IMs to perform two or more decision-
made by agents to achieve the goals of the sensor network. making functions is independent and so the total machine
The measure of the MIQ of an agent-based distributed sen- intelligence quotient is given as
sor network was developed by removing the contributions
of the human element from the method for determining the Pma mf nca nf
MIQ of a human-machine cooperative system [9]. We have MIQtotI =BSI+ Y. YMIQ(ma, f)+ Y_ Y, MQ(ca, f) (3)
further refined the measure of MIQ in this paper. ma=1 f=1 ca=-1 f=

In the sensor network under consideration, agents
provide intelligence with a goal of increasing the network where nf is the number of decision-making functions per-
field life without adversely affecting performance. Even formed by the IM. From (2) and (3)
without agents, the system performs certain tasks that are
achieved with what will be referred to as base system intel-
ligence (B SI). The distributed sensor network system is also MlQtoi,, =BSI + ri;V. (4)
decomposed into a number of intelligent machines (IMs)
working together to achieve system goals, with each IM
encompassing an agent. Each IM in the system is assumed 6 Results and discussion
to perform 8 tasks (detect, observe, identify, interpret,
evaluate, define, select actions, execute actions) in making a Fig. 5 shows the average number of computations and
decision. The MIQ of the total system is calculated as the communications performed at every simulation instant for
sum of the BSI and MIQs of each intelligent machine in the each scenario. Fig. 6 shows the percentage of trials in which
system the simulation ended due to the field life being limited by

the loss of a sensor, cluster, or master node. Fig. 7 showsnina nica

MlQ1 oa,=BSI+ Y MIQ(ma)+ Y_ MlQ(ca) (1) the average field life obtained for each scenario. Fig. 8
ma=I ca=I shows the tracking performance achieved for the different

scenarios.
where
BSI is the MIQ contributed by the base system
MIQ(ma) is the MIQ contributed by master agent ma
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Fig. 5. Average number of computations (grey) and com- Fig. 8. Mean RMS target position estimation error achieved

munications (striped) per simulation instant for each agent for each agent scenario in Monte Carlo simulations (N=30).

scenario in Monte Carlo simulations (N=30). Scenarios 1, 2, and 3 used I master node and 9 cluster

nodes. In scenario 1, there were no agents present in the
100% -- "system. The simulations ended due to loss of a sensor node

50% of the time and due to loss of a master node 50% of the
time (Fig. 6). No resource management strategies were

W - utilized. The tracking performance was good (Fig. 8) butSz 70%-
_W since there is a large communications overhead (Fig. 5), the

z60%
S50%- field life was low (Fig. 7).

0• 40% -In scenario 2, the master agent allowed the master
30% node to execute the high-level fusion and tracking algo-

20% -rithms periodically (TT) in order to reduce the number ofin- 20 J-

10% computations performed at the master node (Fig. 5). How-

0%. ever, since the sensor and cluster nodes were on continu-

1 2 3 4 5 6 ously as in scenario 1, the number of communications in the
SCENARIO system was high (Fig. 5) and the field life was low (Fig. 7)

even though the tracking performance suffered with TT
Fig. 6. The percentage of trials for which the simulation evntogthtrcigpfrmcesfrdwthT

Fig.6. he ercntae o trals or hic th siulaion (Fig. 8). In scenario 2, the simulations ended due to loss of

ended due to field life being limited by loss of a sensor node a sens cenode 2, the simulan d due to loss of

(grey), a cluster node (black bar), and all master nodes

(striped) for each agent scenario in Monte Carlo simulations master node 40% of the time (Fig. 6).
In scenario 3, cluster agents were used to control the

(N=30)" periodicity of execution of the intermediate-level fusion

algorithms running on cluster nodes (TT). Each cluster node
5000 .. .. gathered data from its sensors periodically to reduce the

S4500 .. number of sensor-to-cluster communications. The master

z 40001 node periodically received target position estimates from

S3500 cluster nodes, reducing the number of cluster-to-master
-Z 3000' node communications. The communications reduction in-

z 2500! - creased the field life (Fig. 7) without much of a reduction in
-J0

W F_ 2000 tracking performance (Fig. 8). Thus, just by making the
-D 1500 ' agent perform TT at the cluster level instead of at the master

2 1000 level, a considerable improvement in field life was achieved

' 500_ (Fig. 7).

0 Scenarios 4, 5, and 6 used 4 master nodes and 9 clus-
1 2 3 4 5 6 ter nodes. As in scenario 2, in scenario 4 the master agent

SCENARIO employed TT. However, since the sensor and cluster nodes

Fig. 7. Average field life (simulation instants) achieved for were on continuously, the number of communications in the

each agent scenario in Monte Carlo simulations (N=30). system was high (Fig. 5) and the tracking performance also
suffered with TT (Fig. 8). Scenario 4 used the CCI scheme
effectively to switch the master node finction from one
master node to another, such that the field life ended due to
due to the loss of a sensor or cluster node and not a master



node (Fig. 6). By using redundant master nodes, scenario 4 network. The simulation framework demonstrated the seal-
was able to achieve a higher field life compared to scenario ability and flexibility of an agent-based system where task-
2. But because of the higher number of communications specific agents are added or removed to simulate different
(Fig. 5), scenario 4 had a field life lower than scenario 3 scenarios with ease.
(Fig. 7). The results demonstrate the need to make the appro-

Scenario 5 used the CT tracking mode at the master priate algorithms available at the levels in the hierarchy
level to save power while preserving tracking performance where they can be of the most benefit. Scenarios having
(Fig. 8). In scenario 5, the master agents could decide to put high MIQs generally achieved a high performance, espe-
a cluster node into hibernation (CC2), and cluster agents, in cially in cases where the agents were given the capability to
turn, could decide to put the sensor nodes into hibernation use the best tracking, control and coordination algorithms.
(CC3). Thus, the power saved with CT and that saved using
coordination modes CCl, CC2, and CC3 increased field life 8 Acknowledgment
(Fig. 7). Parts of this effort were sponsored by the Department

Scenario 6 used CT at the cluster level and used coor- of the
dmnation modes CC1, CC2, and CC3 to further increase field ings, avy office of NavalmResar ions find-life (Fig. 7) at the expense of a slightly degraded tracking igand conclusions or recommendations expressed in this
performance (Fig. 8). material are those of the author(s) and do not necessarily

reflect the views of the Office of Naval Research.
With TT, the tracking performance degrades grace-
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Abstract In a simulation study, repeated rerouting of communica-

tions to balance power utilization and to increase the life of
Sensor networks that can reconfigure to extend their the sensor field was accomplished by optimization of a

useful operating life while guaranteeing coverage perform- complex cost function using evolutionary computation [2].
ance are of interest. This paper describes the use of local- Rerouting of communications resulted in a uniform drain of
ized Performance-Guided Reconfiguration (PGR) for re- node batteries throughout the network, and thus extended
configuring a distributed sensor network in a target local- the field life significantly. However, this centralized ap-
ization scenario using binary sensor data. If a sensor in a proach required repeated optimization of a complex cost
cluster becomes unavailable due to a loss of battery power function and presented a significant communications over-
or other reasons, PGR activates redundant sensors as nec- head in acquiring the data needed for optimization.
essary to allow the network to achieve the desired coverage In another study, a mobile node approach was employed,
performance. For a simple demonstration of localized wherein a few mobile nodes were deployed along with
PGR, we compare the performance of a multicluster net- static nodes [3]. In the event that a static node failed, a cov-
work using localized PGR, a nearest-neighbor reconfigura- erage hole formed. A fuzzy distributed decision making
tion approach, and an approach where no reconfiguration algorithm was then used to determine a mobile node loca-
of the field is done. Without PGR, coverage performance tion that would maximize a utility function depending on
degraded as sensors were lost. With PGR, every time a connectivity and coverage gains.
sensor failed, the respective cluster was reconfigured to Performance-guided reconfiguration (PGR) is an algo-
maintain coverage. In this way, clusters made local recon- rithm that can be employed to reconfigure a sensor network
figuration decisions to achieve the global field coverage to meet the desired performance goals when sensor failures
performance goal. occur. When a sensor fails, PGR identifies candidates for

replacing the failed sensor from a set of available redundant
1. Introduction sensors, and uses a performance-based cost function to se-

lect the candidates to be activated [4]. In order to make
A wireless sensor network (WSN) is a collection of spa- judicious use of resources in a distributed system, localized

tially distributed sensing devices that function cooperatively algorithms that do not require global information are
to garner information about an environment or event of in- needed [5]. Some initial simulation results of localized
terest. Initially motivated by military applications such as PGR, in which PGR is applied at the cluster level in a mul-

battlefield surveillance, WSNs, today, are being applied in ticluster sensor network, were described in [6].
areas such as home automation, traffic control, process In this paper, the work in [6] was extended by using
monitoring, precision agriculture, emergency response, and simqlations to study localized PGR and to compare sensor
structural health monitoring [1]. network performance using localized PGR, no reconfigura-

Power is the scarcest resource available to sensor nodes. tion (NR), and a simple nearest-neighbor reconfiguration
Since WSNs are installed in hostile or inaccessible envi- (NNR) strategy. In the case of NR, as the name suggests,
ronments, algorithms for control, coordination, routing, and the performance of the network was observed to deteriorate
communication need to be energy-efficient. Over time, node as sensors continued to become unavailable since no redun-
batteries can weaken and eventually die, leaving the nodes dant sensors were available to be used as replacements. In
powerless, and the network crippled. In order for the net- case of NNR, the nearest redundant sensor was always cho-
work to be able to regain its operational performance at the sen to be activated, but since there was no means to com-

desired level, a rearrangement or reconfiguration of re- pare how the performance would be affected by the choice

sources is imperative.



of redundant sensor to be awakened, the network perform- sensor i and time framej
ance remained below par.

This paper is organized as follows. First, the maximum SY =a. +
likelihood (ML) method of target localization using binary (3)
sensor data is reviewed. Next, an exemplary sensor network
is described, and the localized PGR method is presented. Each sensor makes a binary decision depending on the
The simulation methods are described. Finally, results corn- signal sy satisfying a local sensor threshold ly during time-
paring localized PGR with NR and NNR strategies are pre- frame j and transmits its decision to a higher-level fusion
sented. node where it is used in target localization. After collecting

the decisions I¢ from all N sensors for all T timeframes, the

2. Target Localization higher-level node estimates the parameter vector including
the target position 0= [x, yj by maximizing a log likelihood
function with respect to 0. An estimator based on theTarget localization for position estimation or tracking is Nelder-Mead search method was used to maximize the log

an important application of WSNs. Target localization likelihood finction, with the search starting at an initialmethods include an approach using binary sensor data for estimate of 9 computed as a weighted average of the posi-

which a ML estimator and its Cramer-Rao lower bound tions of 0 consored in a tefrage.

have been derived [7]. In this approach, each sensor makes tions of the reporting sensors in a timeframe.

a binary decision about a target's presence by comparing the ML estimate is given by

measured signal strength to a threshold, and communicates

a one-bit message to a fusion center. The fusion center uses
the binary information received from all the sensors, along Ef[6(I)-OJQ(I)-Of J- (4)
with a priori information about the positions of the sensors,
to localize the target through nonlinear optimization of a where J is the Fisher Information Matrix. Details of the
highly complex multimodal function. Recently, this ap- Fisher Information Matrix are given in [7]. The covari-
proach has been extended for localization based on quan- ances of the errors in estimates of (x,, y) are bounded by the
tized data [8]. These methods are attractive because they (1,1), (2,2), and (1,2) elements in the J-1 matrix, respec-
facilitate accurate target localization based on the transmis- tively
sion of binary or multibit quantized data, which requires
limited communication bandwidth. The maximum likeli- var(•)=var(-it)>_J-
hood (ML) estimation framework for target localization
using binary data presented in [71 and reviewed in the fol- var(O2 )=var(,)Ž)J22 1  (5)
lowing is utilized in this paper. cov02 )=c~v( t,)Jl2-1

In the model below, signal intensity is assumed to at-
tenuate as the distance from the target to a sensor increases A lower bound on the variance of the overall target position

estimate h can then be computed as
a =

l+Pdi" var(D) = var(Ol ) + var(.92 ) + 2 cov(01 , 2) (6)

where d, is the distance from the target to the ith sensor, ai where D=4 2  is the Frobenius norm. Thus, the
is the signal amplitude at the ith sensor, FP, is the signal lower bound for the root-mean square (RMS) error in the

amplitude at the ith sensor when d, is zero, a is a constant, n overall target position estimate isn Computing the
is the signal energy decay exponent. Sensor parameters
used in this paper are n = 2, a= 2, and P,0 = 64. The dis- lower bound on RMS error icross many target locations
tance from the target to the ith sensor is given by within a sensor field aids in assessing the performance of

alternative network configurations.

di =4(xi - xI)2 + (yi _ yt2 (2) 3. The Sensor Field Layout

where (xi, y,) are the coordinates of the ith sensor and the Consider a cluster with 49 active sensors (Fig. 1) placed
target location is given by (x,, y,). The signal ai is corrupted at intersecting points of a uniform grid with unit spacing.
by standard Gaussian noise cay that is independent across



area of the field. The overlap between a cluster and its
?,• ? ? *neighbors was such that the performance criterion would be

0 , o 0 0 0 0 met by the field if the performance criterion of 0.155 dis-
+ -- ----. -- - tance units was met within the coverage area of each cluster

0 0 0 0 0 0 (Fig. 3). In this way, the targeted global field performance
4 .. . .would be met through reconfiguration done to meet local

0 : 0 0 0:0 performance.
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Figure 1. Sensor layout in a cluster. Solid circles
show active sensors placed along a uniform grid 014.

of unit spacing, and white circles represent re-
dundant sensors uniformly placed between active P

sensors. 10 10

Within each cluster, redundant sensors were uniformly 4 x

placed at positions between the active sensors. Nine such
clusters were grouped together to form a field of 441 active 0 0

sensors, and 324 redundant sensors. The clusters were posi- Figure 3. Computed CRLB for the RMS error in the
tioned to overlap with neighboring clusters such that the estimate of D versus x and y for the nominal field
nominal sensor field would satisfy a performance criterion coverage area when no sensor has failed. The per-
for all target locations within the coverage area, as shown formance criterion of 0.155 distance units for the
bounded by the dotted line in Fig. 2. RMS error is shown as a plane.

4. Localized PGR

3 6 9

______ I PGR works by activating redundant sensors to replace a
4.• failed sensor. In this study, the PGR algorithm was applied

locally within the cluster that had a sensor fail. Initially,
2 5 8 multiple sets of redundant inactive sensors that could be

____ - activated to meet the performance criterion within the clus-
-t 14. ter are identified as candidates for replacing the failed sen-

sor. A cost function that weighs additional criteria of inter-
1 4 7 est is then used to select the candidate sensor set that opti-

,mized cluster performance as described in [4].

Figure 2. Layout of the field with overlapping clus- 4.1 Cost Analysis

ters. The area of overlap, shown in gray, is 1.25 Since there can be multiple sets of candidate sensors
units wide. The area inside the dotted line is the available to replace a lost sensor, making decisions about
coverage area. which candidate set to activate based on additional criteria

The coverage area of the field was a square of side 10.5 of interest allows the overall network performance to be

distance units. The performance criterion was set to 0.155 optimized. A cost function provides the basis for ranking all

distance units, which was the maximum allowable value for possible solutions and for adjusting the weights of the indi-
vidual performance objectives in terms of the total cost for

the computed CRLB on the RMS error in the overall target a candidate set S.
position estimate,/D for every point within the coverage



74 N- employing the PGR algorithm locally within the cluster
Cost(S) = Nsc+z,4ri -r)+Y 7ZiR" (7) having the failed sensor so that the performance criterion

I R was met inside the cluster.
At each simulation instant that a sensor failed, the CRLB

yand r are adjustable constants, N, is the total number of was computed over a dense grid of target positions inside
sensors in candidate set S, c is a flat cost per sensor, and r is the respective cluster after application of each of the NR,
the radius of a no-penalty search area around the dead sen- NNR, and localized PGR approaches. The percentage of the
sor. r, is the distance of candidate sensor i from the dead coverage area not meeting the performance criterion, H, and
sensor, Nj is total number of sensors in areaj in candidate an approximation to the volume, V, enclosed by the error
set S, and Rj is the number of redundant sensors available in surface above the performance criterion plane were com-
areaj (area refers to one of four sectors formed by dividing puted to serve as the performance metrics used to compare
the area around the dead sensor bounded by the search ra- reconfiguration approaches.
dius r into four parts).

The cost function weighs the absolute sensor cost (term 6. Results
1), the distance of the candidate sensor from the failed
sensor (term 2), and the cost of utilized redundant re- The coverage performance degraded as sensors failed
sources (term 3). Term 2 is applied only if the candidate with NR and NNR (Fig. 4, Table 2). NR represented the
sensor is outside a no-penalty search area such that r,-r is worst-case performance achieved when sensors failed and
positive. A no-penalty search area is an area bounded by the there was no replacement. Some improvement was achieved
initial search radius. The search radius is increased if sen- by replacing failed sensors using NNR_
sors in the area bound by the initial search radius do not
meet the performance requirement, and term 2 is then non-
zero. NR

5. Simulation Study

Simulations were used to allow the field performance
achieved with localized PGR to be compared to that at-
tained with NR and NNR approaches. A test pattern of sen- NNR
sor failures over time was constructed by simulating sensor
failures at random times and at random locations within
clusters 1, 2, 4 and 5 in the field (Fig. 2). A total of 23 sen-
sors failed over the duration of the simulation, which was
300 simulation instants. The cumulative number of sensor PGR
failures at representative simulation instants is listed in Ta-
ble 1.

34 77 257
Table 1. Number of failed sensors at representa- Simulation Instant

tive simulation Instants
Simulation Instant Number of Failed Sensors Figure 4. Snapshots of the field performance

showing areas not meeting the performance crite-
34 3 ron In white for NR, NNR, and localized PGR at
77 7 simulation Instants 34, 77, and 257 from left to

112 10 right.

184 17
229 20 In contrast to the performance degradation that resulted
245 22 with NR and NNR, with localized PGR, activation of re-

257 23 dundant sensors to replace failed sensors allowed the per-
formance criterion to be met over the entire duration of the

The test pattern was applied for each of the NR, simulations.

and localized PGR approaches. For NR, a failed sensor was
not replaced. For NNR, a failed sensor was replaced by the
nearest redundant sensor. With localized PGR, a failed sen-
sor was replaced by the redundant sensor(s) selected by



Table 2. Comparison of the performance of re- erage holes formed due to sensor failures and the target
configuration approaches localization performance deteriorated.

PGR is an algorithm that can be used to reconfigure a
NR NNR PGR distributed sensor network to allow it to regain its coverage

Simul. H V H V H V performance after sensors are lost due to battery exhaustion
instant (%) (xl03units 3 ( xl0 units3) () xl 3units3) or other reasons. Thus, PGR allows sensor networks to re-

34 2.4 35 0.5 9 0 0 configure in order to extend their useful operating life while
77 6.9 83 1.9 16 0 0 guaranteeing coverage performance. In localized PGR, the
112 7.9 96 2.1 18 0 0 reconfiguration is done at the cluster level, allowing the
184 11.3 177 2.7 24 0 0 sensor network to have the advantages offered by distrib-
229 14.1 249 3.0 25 0 0 uted systems. PGR also allows tradeoffs to be made be-
245 15.0 302 3.8 43 0 0 tween the performance, resources, and cost benefits from
257 15.8 325 4.0 45 0 0 reconfiguration.

In the field layout employed for this study, clusters were
Without localized PGR (in NNR and NR), the percent- made to overlap in such a way that allowed the performance

age of the coverage area not meeting the performance crite- criterion to be met at all target locations inside the coverage
rion (H) increased as sensors continued to fail, and the de- area before any sensor failures. The placement of active and
gree to which the performance criterion was not met in- redundant sensors was denser in the areas where clusters
creased such that the size of coverage holes increased and overlapped than in areas where there was no overlap be-
the volume enclosed by the surface above the performance tween clusters. Although this field layout was suitable to
criterion plane (P) increased (Fig. 5). demonstrate and compare localized PGR, no attempt was

made to optimize the placement of active and redundant
sensors. In future work, optimization of sensor placement
will allow better use of redundant resources and the overlap

022 -between clusters for localized PGR. A more realistic simu-

0..2.lation of PGR with resource models mimicking entities and0.2, • ;. .

processes that will be present in an actual physical system is
0.18 another area for future work [9].

0.1. .. 8. Acknowledgment

0,14,

This work was supported in part by the Office of Naval
0.12-'- Research under Grant N00014-03-1-0751. Parts of this ef-

10 12 fort were sponsored by the Department of the Navy, Office
S" -of Naval Research. Any opinions, findings, and conclusions

""--42 4 6x or recommendations expressed in this material are those of
0 0 the author(s) and do not necessarily reflect the views of the

Office of Naval Research.
Figure 5. Computed CRLB for the RMS error in the
estimate of D versus x and y for the field with no 9. References
reconfiguration after the failure of 23 sensors over
257 simulation Instants. The performance criterion [1] C. Y. Chong, S.P. Kumar, "Sensor networks: Evolution,
of 0.155 for the RMS error is shown as a plane. A opportunities, and challenges", Proc. IEEE, August 2003.
significant part of the coverage area does not
meet the performance criterion. [2] M.W. Owen, D.M. Kiamer and Barbara Dean. "Evolutionary

control of an autonomous field", Proceedings of the Third Inter-

7. Discussion and Conclusions national Conference on Information Fusion, July 10-13, 2000, pp.
MoD1-3: 9.

This paper presented a comparison of the target localiza- [31 X. Du, M. Zhang, K. Nygard, M. Guizani, and H. Chen,
tion performance of localized network reconfiguration ap- "Distributed decision making algorithm for self-healing sensor
proaches. With localized PGR, the network was reconfig- networks," to appear in Proceedings of the 2006 IEEE ICC Con-
ured to replace failed sensors by activating redundant sen- ference, 2006.
sors so that the desired performance criterion was always
met over the entire coverage area. With NR and NNR, cov-



[4] P.P. Joshi and T.C. Jannett, "Performance-guided reconfigu- [7] K Niu and P. K. Varshney, "Target location estimation in
ration of wireless sensor networks that use binary data for target wireless sensor networks using binary data," in Proceedings of the
localization," in Proceedings of the 2006 ITNG Conference, 2006, International Conference on Acoustics, Speech, and Signal Proc-
pp. 562-565. essing, May 2001, pp. 2037-2040.

[5] H. Qi, P. T. Kuruganti, and Y. Xu, "The development of [8] R. Niu and P. K. Varshney, "Target location estimation in
localized algorithms in wireless sensor network," Sensors, vol. 2, sensor networks with quantized data," in IEEE Transactions on
July 2002, pp. 286-293. Signal Processing, vol. 54, December, 2006, pp. 4519-4528.

[6] P.P. Joshi and T.C. Jannett, "Simulation of localized per- [9] S. V. Chandrachood, A. Anthony, and T. C. Jannett, "Using
formance-guided reconfiguration of distributed sensor networks," resource based modeling to evaluate coordination schemes in
to appear in Proceedings of the 2007 ITNG Conference, 2007. wireless sensor networks," in Proceedings of IEEE SoutheastCon,

Memphis, 2006, pp. 91-97.


